Amazon cover image
Image from Amazon.com

Video based machine learning for traffic intersections

By: Contributor(s): Material type: TextTextPublication details: Routledge New York 2024Description: xxvi, 167 pISBN:
  • 9781032542263
Subject(s): DDC classification:
  • 006.3 BAN
Summary: Video Based Machine Learning for Traffic Intersections describes the development of computer vision and machine learning-based applications for Intelligent Transportation Systems (ITS) and the challenges encountered during their deployment. This book presents several novel approaches, including a two-stream convolutional network architecture for vehicle detection, tracking, and near-miss detection; an unsupervised approach to detect near-misses in fisheye intersection videos using a deep learning model combined with a camera calibration and spline-based mapping method; and algorithms that utilize video analysis and signal timing data to accurately detect and categorize events based on the phase and type of conflict in pedestrian-vehicle and vehicle-vehicle interactions. The book makes use of a real-time trajectory prediction approach, combined with aligned Google Maps information, to estimate vehicle travel time across multiple intersections. Novel visualization software, designed by the authors to serve traffic practitioners, is used to analyze the efficiency and safety of intersections. The software offers two modes: a streaming mode and a historical mode, both of which are useful to traffic engineers who need to quickly analyze trajectories to better understand traffic behavior at an intersection. Overall, this book presents a comprehensive overview of the application of computer vision and machine learning to solve transportation-related problems. Video Based Machine Learning for Traffic Intersections demonstrates how these techniques can be used to improve safety, efficiency, and traffic flow, as well as identify potential conflicts and issues before they occur. The range of novel approaches and techniques presented offers a glimpse of the exciting possibilities that lie ahead for ITS research and development. Key Features: Describes the development and challenges associated with Intelligent Transportation Systems (ITS) Provides novel visualization software designed to serve traffic practitioners in analyzing the efficiency and safety of an intersection Has the potential to proactively identify potential conflict situations and develop an early warning system for real-time vehicle-vehicle and pedestrian-vehicle conflicts (https://www.routledge.com/Video-Based-Machine-Learning-for-Traffic-Intersections/Banerjee-Huang-Wu-Chen-Rangarajan-Ranka/p/book/9781032542263?srsltid=AfmBOooYRA-l5jj_kpYwFD6j4aPGCwypQ9cRnpyumWsSdSQVDtMBxhip)
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode
Book Book Indian Institute of Management LRC General Stacks IT & Decisions Sciences 006.3 BAN (Browse shelf(Opens below)) 1 Available 007959

Table of contents:
1. Introduction 2. Detection, Tracking, and Classification 3. Near-miss Detection 4. Severe Events 5. Performance-Safety Trade-offs 6. Trajectory Prediction 7. Vehicle Tracking across Multiple Intersections 8. User Interface 9. Conclusion

(https://www.routledge.com/Video-Based-Machine-Learning-for-Traffic-Intersections/Banerjee-Huang-Wu-Chen-Rangarajan-Ranka/p/book/9781032542263?srsltid=AfmBOooYRA-l5jj_kpYwFD6j4aPGCwypQ9cRnpyumWsSdSQVDtMBxhip)

Video Based Machine Learning for Traffic Intersections describes the development of computer vision and machine learning-based applications for Intelligent Transportation Systems (ITS) and the challenges encountered during their deployment. This book presents several novel approaches, including a two-stream convolutional network architecture for vehicle detection, tracking, and near-miss detection; an unsupervised approach to detect near-misses in fisheye intersection videos using a deep learning model combined with a camera calibration and spline-based mapping method; and algorithms that utilize video analysis and signal timing data to accurately detect and categorize events based on the phase and type of conflict in pedestrian-vehicle and vehicle-vehicle interactions.

The book makes use of a real-time trajectory prediction approach, combined with aligned Google Maps information, to estimate vehicle travel time across multiple intersections. Novel visualization software, designed by the authors to serve traffic practitioners, is used to analyze the efficiency and safety of intersections. The software offers two modes: a streaming mode and a historical mode, both of which are useful to traffic engineers who need to quickly analyze trajectories to better understand traffic behavior at an intersection.

Overall, this book presents a comprehensive overview of the application of computer vision and machine learning to solve transportation-related problems. Video Based Machine Learning for Traffic Intersections demonstrates how these techniques can be used to improve safety, efficiency, and traffic flow, as well as identify potential conflicts and issues before they occur. The range of novel approaches and techniques presented offers a glimpse of the exciting possibilities that lie ahead for ITS research and development.

Key Features:

Describes the development and challenges associated with Intelligent Transportation Systems (ITS)
Provides novel visualization software designed to serve traffic practitioners in analyzing the efficiency and safety of an intersection
Has the potential to proactively identify potential conflict situations and develop an early warning system for real-time vehicle-vehicle and pedestrian-vehicle conflicts

(https://www.routledge.com/Video-Based-Machine-Learning-for-Traffic-Intersections/Banerjee-Huang-Wu-Chen-Rangarajan-Ranka/p/book/9781032542263?srsltid=AfmBOooYRA-l5jj_kpYwFD6j4aPGCwypQ9cRnpyumWsSdSQVDtMBxhip)

There are no comments on this title.

to post a comment.

©2025-2026 Pragyata: Learning Resource Centre. All Rights Reserved.
Indian Institute of Management Bodh Gaya
Uruvela, Prabandh Vihar, Bodh Gaya
Gaya, 824234, Bihar, India

Powered by Koha