Amazon cover image
Image from Amazon.com

Essential mathematics for economics

By: Material type: TextTextPublication details: CRC Press Boca Raton 2025Description: xxi, 285 pISBN:
  • 9781032698946
Subject(s): DDC classification:
  • 330.0151 TOD
Summary: Essential Mathematics for Economics covers mathematical topics that are essential for economic analysis in a concise but rigorous fashion. The book covers selected topics such as linear algebra, real analysis, convex analysis, constrained optimization, dynamic programming, and numerical analysis in a single volume. The book is entirely self-contained, and almost all propositions are proved. (https://www.routledge.com/Essential-Mathematics-for-Economics/Toda/p/book/9781032698946)
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode
Book Book Indian Institute of Management LRC General Stacks Operations Management & Quantitative Techniques 330.0151 TOD (Browse shelf(Opens below)) 1 Available 008829

Table of Contents:

0. Roadmap. Section I. Introduction to Optimization. 1. Existence of Solutions. 1.1. Introduction. 1.2. The Real Number System. 1.3. Convergence of Sequences. 1.4. The Space rn. 1.5. Topology of rn. 1.6. Continuous Functions. 1.7. Extreme Value Theorem. 1.A. Topological Space. 2. One-Variable Optimization. 2.1. Introduction. 2.2. Differentiation. 2.3. Necessary Condition. 2.4. Mean Value and Taylor’s Theorem. 2.5. Sufficient Condition. 2.6. Optimal Savings Problem. 3. Multi-Variable Unconstrained Optimization. 3.1. Introduction. 3.2. Linear Maps and Matrices. 3.3. Differentiation. 3.4. Chain Rule. 3.5. Necessary Condition. 4. Introduction to Constrained Optimization. 4.1. Introduction. 4.2. One Linear Constraint. 4.3. Multiple Linear Constraints. 4.4. Karush-Kuhn-Tucker Theorem. 4.5. Inequality and Equality Constraints. 4.6. Constrained Maximization. 4.7. Dropping Nonnegativity Constraints. Section II. Matrix and Nonlinear Analysis. 5. Vector Space, Matrix, and Determinant. 5.1. Introduction. 5.2. Vector Space. 5.3. Solving Linear Equations. 5.4. Determinant. 6. Spectral Theory. 6.1. Introduction. 6.2. Eigenvalue and Eigenvector. 6.3. Diagonalization. 6.4. Inner Product and Norm. 6.5. Upper Triangularization. 6.6. Positive Definite Matrices. 6.7. Second-Order Optimality Condition. 6.8. Matrix Norm and Spectral Radius. 7. Metric Space and Contraction. 7.1. Metric Space. 7.2. Completeness and Banach Space. 7.3. Contraction Mapping Theorem. 7.4. Blackwell’s Sufficient Condition. 7.5. Perov Contraction. 7.6. Parametric Continuity of Fixed Point. 8. Implicit Function and Stable Manifold Theorem. 8.1. Introduction. 8.2. Inverse Function Theorem. 8.3. Implicit Function Theorem. 8.4. Optimal Savings Problem. 8.5. Optimal Portfolio Problem. 8.6. Stable Manifold Theorem. 8.7. Overlapping Generations Model. 9. Nonnegative Matrices. 9.1. Introduction. 9.2. Markov Chain. 9.3. Perron’s Theorem. 9.4. Irreducible Nonnegative Matrices. 9.5. Metzler Matrices. Section III. Convex and Nonlinear Optimization. 10. Convex Sets. 10.1. Convex Sets. 10.2. Convex Hull. 10.3. Hyperplanes and Half Spaces. 10.4. Separation of Convex Sets. 10.5. Cone and Dual Cone. 10.6. No-Arbitrage Asset Pricing. 11. Convex Functions. 11.1. Convex and Quasi-Convex Functions. 11.2. Convexity-Preserving Operations. 11.3. Differential Characterization. 11.4. Continuity of Convex Functions. 11.5. Homogeneous Quasi-Convex Functions. 11.6. Log-Convex Functions. 12. Nonlinear Programming. 12.1. Introduction. 12.2. Necessary Condition. 12.3. Karush-Kuhn-Tucker Theorem. 12.4. Constraint Qualifications. 12.5. Saddle Point Theorem. 12.6. Duality. 12.7. Sufficient Conditions. 12.8. Parametric Differentiability. 12.9. Parametric Continuity. Section IV. Dynamic Optimization. 13. Introduction to Dynamic Programming. 13.1. Introduction. 13.2. Knapsack Problem. 13.3. Shortest Path Problem. 13.4. Optimal Savings Problem. 13.5. Optimal Stopping Problem. 13.6. Secretary Problem. 13.7. Abstract Formulation. 14. Contraction Methods. 14.1. Introduction. 14.2. Markov Dynamic Program. 14.3. Sequential and Recursive Formulations. 14.4. Properties of Value Function. 14.5. Restricting Spaces. 14.6. State-Dependent Discounting. 14.7. Weighted Supremum Norm. 14.8. Numerical Dynamic Programming. 15. Variational Methods. 15.1. Introduction. 15.2. Euler Equation. 15.3. Transversality Condition. 15.4. Stochastic Case. 15.5. Optimal Savings Problem.

Essential Mathematics for Economics covers mathematical topics that are essential for economic analysis in a concise but rigorous fashion. The book covers selected topics such as linear algebra, real analysis, convex analysis, constrained optimization, dynamic programming, and numerical analysis in a single volume. The book is entirely self-contained, and almost all propositions are proved.

(https://www.routledge.com/Essential-Mathematics-for-Economics/Toda/p/book/9781032698946)

There are no comments on this title.

to post a comment.

©2025-2026 Pragyata: Learning Resource Centre. All Rights Reserved.
Indian Institute of Management Bodh Gaya
Uruvela, Prabandh Vihar, Bodh Gaya
Gaya, 824234, Bihar, India

Powered by Koha