Mathematics for machine learning (Record no. 9674)

MARC details
000 -LEADER
fixed length control field 03368nam a2200217 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250507165852.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250507b |||||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781108455145
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 006.31
Item number DEI
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Deisenroth, Marc Peter
245 ## - TITLE STATEMENT
Title Mathematics for machine learning
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Name of publisher, distributor, etc. Cambridge University Press
Place of publication, distribution, etc. New York
Date of publication, distribution, etc. 2020
300 ## - PHYSICAL DESCRIPTION
Extent xvii, 371.p
365 ## - TRADE PRICE
Price type code GBP
Price amount 39.99
500 ## - GENERAL NOTE
General note Table of contents:<br/>Part I - Mathematical Foundations<br/><br/>pp 1-2<br/>1 - Introduction and Motivation<br/><br/>pp 3-7<br/>2 - Linear Algebra<br/><br/>pp 8-56<br/>3 - Analytic Geometry<br/><br/>pp 57-81<br/>4 - Matrix Decompositions<br/><br/>pp 82-119<br/>5 - Vector Calculus<br/><br/>pp 120-151<br/>6 - Probability and Distributions<br/><br/>pp 152-200<br/>7 - Continuous Optimization<br/><br/>pp 201-222<br/>Part II - Central Machine Learning Problems<br/><br/>pp 223-224<br/>8 - When Models Meet Data<br/><br/>pp 225-259<br/>9 - Linear Regression<br/><br/>pp 260-285<br/>10 - Dimensionality Reduction with Principal Component Analysis<br/><br/>pp 286-313<br/>11 - Density Estimation with Gaussian Mixture Models<br/><br/>pp 314-334<br/>12 - Classification with Support Vector Machines<br/><br/>pp 335-356<br/>References<br/><br/>pp 357-366<br/>Index<br/><br/>pp 367-372<br/><br/>[Part I - Mathematical Foundations<br/><br/>pp 1-2<br/>1 - Introduction and Motivation<br/><br/>pp 3-7<br/>2 - Linear Algebra<br/><br/>pp 8-56<br/>3 - Analytic Geometry<br/><br/>pp 57-81<br/>4 - Matrix Decompositions<br/><br/>pp 82-119<br/>5 - Vector Calculus<br/><br/>pp 120-151<br/>6 - Probability and Distributions<br/><br/>pp 152-200<br/>7 - Continuous Optimization<br/><br/>pp 201-222<br/>Part II - Central Machine Learning Problems<br/><br/>pp 223-224<br/>8 - When Models Meet Data<br/><br/>pp 225-259<br/>9 - Linear Regression<br/><br/>pp 260-285<br/>10 - Dimensionality Reduction with Principal Component Analysis<br/><br/>pp 286-313<br/>11 - Density Estimation with Gaussian Mixture Models<br/><br/>pp 314-334<br/>12 - Classification with Support Vector Machines<br/><br/>pp 335-356<br/>References<br/><br/>[https://www.cambridge.org/highereducation/books/mathematics-for-machine-learning/5EE57FD1CFB23E6EB11E130309C7EF98#contents]
520 ## - SUMMARY, ETC.
Summary, etc. The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.<br/><br/>(https://www.cambridge.org/highereducation/books/mathematics-for-machine-learning/5EE57FD1CFB23E6EB11E130309C7EF98#contents)
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Machine learning
700 ## - ADDED ENTRY--PERSONAL NAME
Personal name Faisal, Aldo A
700 ## - ADDED ENTRY--PERSONAL NAME
Personal name Ong, Cheng Soon
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Book
Source of classification or shelving scheme Dewey Decimal Classification
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code Bill No Bill Date Home library Current library Shelving location Date acquired Source of acquisition Cost, normal purchase price Total Checkouts Full call number Accession Number Date last seen Cost, replacement price Price effective from Koha item type
    Dewey Decimal Classification     IT & Decisions Sciences TB4762 21-03-2025 Indian Institute of Management LRC Indian Institute of Management LRC General Stacks 03/28/2025 Technical Bureau India Pvt. Ltd. 2893.08   006.31 DEI 008601 03/28/2025 4450.89 03/28/2025 Book

©2025-26 Pragyata: Learning Resource Center. All Rights Reserved.
Indian Institute of Management Bodh Gaya
Uruvela, Prabandh Vihar, Bodh Gaya
Gaya, 824234, Bihar, India

Powered by Koha