Modeling operations research and business analytics (Record no. 9074)

MARC details
000 -LEADER
fixed length control field 10227nam a22002297a 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250409161211.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250409b |||||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781032735924
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 658.403
Item number FOX
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Fox, William P.
245 ## - TITLE STATEMENT
Title Modeling operations research and business analytics
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Name of publisher, distributor, etc. Routledge
Place of publication, distribution, etc. New York
Date of publication, distribution, etc. 2025
300 ## - PHYSICAL DESCRIPTION
Extent xix, 254 p.
365 ## - TRADE PRICE
Price type code GBP
Price amount 44.99
490 ## - SERIES STATEMENT
Series statement Advances in Applied Mathematics
500 ## - GENERAL NOTE
General note Table of contents:<br/>About the Authors<br/><br/>Preface<br/><br/>1. Chapter 1. Inventory Problem<br/><br/>1.1 Introduction<br/><br/>1.2 Inventory Problems<br/><br/>1.3 Inventory and Economic Order Quantity (EOQ)<br/><br/>1.3.1 Inventory Analysis with EOQ formula driven approach<br/><br/>1.3.2 Time Invariant Asphalt EOQ model<br/><br/>1.4 Facility Location with an Oil Rig Location Problem<br/><br/>1.5 Computer Cabling Location of Central Computer<br/><br/>1.6 Exercises<br/><br/>1.7 References<br/><br/>2. Chapter 2 Product Mix: Linear Programming Problems<br/><br/>2.1 Linear Programing Problem Introduction<br/><br/>2.2 Simple Manufacturing Example<br/><br/>2.3 Financial Planning<br/><br/>2.4 Blending Formulation Example<br/><br/>2.5 Production Planning Problem<br/><br/>2.6 Shipping Problem<br/><br/>2.7 Product Mix<br/><br/>2.8 Supply Chain Operations (Gasoline Distribution)<br/><br/>2.9 Product Mix with LINDO<br/><br/>2.10 Exercises<br/><br/>2.11 References and Additional Readings<br/><br/>3. Chapter 3 Transportation and Shipping Problems<br/><br/>3.1 Transportation and Shipping Revisited<br/><br/>3.2 Transportation and Shipping Warehouse Problem<br/><br/>3.2.1 Modification to the Warehouse Problem<br/><br/>3.3 Transportation Network<br/><br/>3.4 Exercises<br/><br/>3.5 References and Additional Readings<br/><br/>4. Chapter 4 Assignment Models<br/><br/>4.1 Training Centers and Offices<br/><br/>4.1.1 Assignment Problem<br/><br/>4.2 Exercises<br/><br/>4.3 References and Additional Readings<br/><br/>5. Chapter 5 Mathematical Programming Methods<br/><br/>5.1 Data Envelopment Analysis (DEA)<br/><br/>5.2 Manufacturing Problem with DEA<br/><br/>5.3 Shortest Path Problems<br/><br/>5.3.1 Network analysis<br/><br/>5.3.2 . Kruskal’s Method for Network Analysis Problem<br/><br/>5.3.3 Prim’s Algorithm<br/><br/>5.3.4 Dijkstra’s Algorithm<br/><br/>5.4 Maximum Flow Problem<br/><br/>5.4.1 Example 5.1. Max Flow through a given network<br/><br/>5.5 Critical Path in Project Plan Network<br/><br/>5.5.1 Example 5.2. CPM<br/><br/>5.6 Minimum Cost Flow Problem<br/><br/>5.6.1 Example 5.3. Min cost flow through a network<br/><br/>5.7 General Integer Linear Programs<br/><br/>5.7.1 Example 5.4. Manufacturing Equipment<br/><br/>5.7.2 Example 5.5. Integer LP Programs by EXCEL<br/><br/>5.8 Mixed Integer Programming Application: "Either-Or" Constraints<br/><br/>5.8.1 Conditional Relations Among Constraints<br/><br/>5.8.2 A Case of Discrete Finite Valued Variable<br/><br/>5.8.3 0 - 1 Integer Linear Programs<br/><br/>5.9 Illustrious Example<br/><br/>5.9.1 Example 5.7. Consider the following Knapsack Problem<br/><br/>5.9.2 Example 5.8. Traveling Salesperson Problem<br/><br/>5.9.3 Example 5.9. Capital Budgeting Applications<br/><br/>5.9.4 Example 5.10. Marketing Application<br/><br/>5.9.5 Example 5.11. The Cutting Stock Problem<br/><br/>5.10 An Engineering Application: Mixing Substances<br/><br/>5.11 Exercises<br/><br/>5.12 References and Additional Readings<br/><br/>6. Chapter 6 Resource Allocation Models using Dynamic Programming<br/><br/>6.1 Introduction: Basic Concepts and Theory<br/><br/>6.2 Characteristics of Dynamic Programming<br/><br/>6.2.1 Working Backwards<br/><br/>6.2.2 Example 6.1 A Knapsack Problem.<br/><br/>6.3 Modeling and Applications of Discrete Dynamic Programming<br/><br/>6.3.1 Oil Well Investment DP Application<br/><br/>6.4 Exercises<br/><br/>6.5 References and Suggested Readings<br/><br/>7. Chapter 7 Queuing Models<br/><br/>7.1 Introduction to Queuing Theory<br/><br/>7.1.1 Simple Fast Food Service Queue Example 7.1<br/><br/>7.2 The Multi-server Problems<br/><br/>7.3 Exercises<br/><br/>7.4 References and Suggested Readings<br/><br/>8. Chapter 8 Simulation Models<br/><br/>8.1 Missile Attack<br/><br/>8.2 Gasoline-Inventory simulation<br/><br/>8.3 Queuing model<br/><br/>8.4 R Applied simulation<br/><br/>8.5 Exercises<br/><br/>8.6 References and Additional Readings<br/><br/>9. Chapter 9 System Reliability Modeling<br/><br/>9.1 Introduction to Reliability Modeling<br/><br/>9.2 Modeling Component Reliability<br/><br/>9.2.1 Battery Problem – Reliability Example 9.1<br/><br/>9.2.2 Battery Problem Revisited – Reliability Example 9.2<br/><br/>9.3 Modeling series and parallel components<br/><br/>9.3.1 Modeling Series Systems<br/><br/>9.3.2 Radio Components – Example 9.3<br/><br/>9.3.3 Modeling Parallel Systems (Two Components)<br/><br/>9.3.4 Parallel Bridges – Example 9.4<br/><br/>9.4 Modeling Active Redundant Systems<br/><br/>9.4.1 Manufacturing – Example 9.5<br/><br/>9.5 Modeling Standby Redundant Systems<br/><br/>9.5.1 Battery Problems Revisited for Stand-by – Example 9.6<br/><br/>9.5.2 Stake Out Problem Revisited – Example 9.7<br/><br/>9.6 Models of Large Scale Systems<br/><br/>9.7 Exercises<br/><br/>9.8 References and Suggested Readings<br/><br/>10. Chapter 10 Modeling Decision Making with Multi-Attribute Decision Modeling with Technology<br/><br/>10.1 Introduction<br/><br/>10.2 Delphi Method<br/><br/>10.2.1 Pairwise Comparison by Saaty (AHP)<br/><br/>10.2.2 Entropy Method<br/><br/>10.3 Simple Additive Weights (SAW) Method<br/><br/>10.4 Technique of Order Preference by Similarly to the Ideal Solution (TOPSIS)<br/><br/>10.5 Modeling of Ranking Units using Data Envelopment Analysis (DEA) with Linear Programming<br/><br/>10.6 Technology for Multi-Attribute Decision Making (MADM)<br/><br/>10.6.1 Technology and Simple Additive Weights<br/><br/>10.7 Exercises<br/><br/>10.8 References and Suggested Readings.<br/><br/>11. Chapter 11 Regression Techniques<br/><br/>11.1 Introduction to Regression Techniques<br/><br/>11.1.1 Correlation, covariance, and its misconceptions<br/><br/>11.1.2 Correlation: A Measure of LINEAR relationship<br/><br/>11.1.3 Calculating the Correlation<br/><br/>11.1.4 Correlation for Global Warming Data Example 11.1<br/><br/>11.1.5 Testing the Significance of a Correlation with hypothesis testing<br/><br/>11.2 Model Fitting and Least Squares<br/><br/>11.2.1 Global Warming Example 11.1<br/><br/>11.3 The Different Curve Fitting Criterion<br/><br/>11.3.1 A Least-Squares Fit Explosive Data Example 11.2<br/><br/>11.4 Diagnostics and Interpretations<br/><br/>11.4.1 Fruit Flies Over Time – Example 11.4<br/><br/>11.4.2 Revisit Explosive Problem – Example 11.5<br/><br/>11.4.3 Revisit the Cubic Model – Example 11.6<br/><br/>11.5 Diagnostics and Inferential Statistics<br/><br/>11.5.1 The Spring Mass System Using R<br/><br/>11.5.2 Simple Linear Regression Model with complete explanation summary in R<br/><br/>11.6 Polynomial Regression in R<br/><br/>11.6.1 Recovery Level Versus Time – Example 11.8<br/><br/>11.6.2 Wheat Production Revisited<br/><br/>11.7 Exercises<br/><br/>11.8 References and Suggested Readings<br/><br/>12. Chapter 12 Marketing Strategies and Competition Using Game Theory.<br/><br/>12.1 Total Conflict Games<br/><br/>12.1.1 Market Shares<br/><br/>12.1.2 Hitter-Pitcher Dual – A Conflict Game Example<br/><br/>12.1.3 The Expanded Hitter-Pitcher Dual<br/><br/>12.2 The Partial Conflict Game Analysis without Communication<br/><br/>12.3 Methods to Obtain the Equalizing Strategies<br/><br/>12.3.1 Linear Programming with Two Players and Two Strategies Each<br/><br/>12.4 Nash Arbitration Method<br/><br/>12.4.1 R and the Nash Arbitration Method<br/><br/>12.5 Exercises<br/><br/>12.6 References and Additional Readings<br/><br/>13. Index<br/>(https://www.routledge.com/Modeling-Operations-Research-and-Business-Analytics/Fox-Burks/p/book/9781032735924)
520 ## - SUMMARY, ETC.
Summary, etc. This book provides sample exercises, techniques, and solutions to employ mathematical modeling to solve problems in Operations Research and Business Analytics. Each chapter begins with a scenario and includes exercises built on realistic problems faced by managers and others working in operations research, business analytics, and other fields employing applied mathematics. A set of assumptions is presented, and then a model is formulated. A solution is offered, followed by examples of how that model can be used to address related issues.<br/><br/>Key elements of this book include the most common problems the authors have encountered over research and while consulting the fields including inventory theory, facilities' location, linear and integer programming, assignment, transportation and shipping, critical path, dynamic programming, queuing models, simulation models, reliability of system, multi-attribute decision-making, and game theory.<br/><br/>In the hands of an experienced professional, mathematical modeling can be a powerful tool. This book presents situations and models to help both professionals and students learn to employ these techniques to improve outcomes and to make addressing real business problems easier. The book is essential for all managers and others who would use mathematics to improve their problem-solving techniques.<br/><br/>No previous exposure to mathematical modeling is required. The book can then be used for a first course on modeling, or by those with more experience who want to refresh their memories when they find themselves facing real-world problems. The problems chosen are presented to represent those faced by practitioners.<br/><br/>The authors have been teaching mathematical modeling to students and professionals for nearly 40 years. This book is presented to offer their experience and techniques to instructors, students, and professionals.<br/><br/>(https://www.routledge.com/Modeling-Operations-Research-and-Business-Analytics/Fox-Burks/p/book/9781032735924)
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Operations research
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Business analytics
700 ## - ADDED ENTRY--PERSONAL NAME
Personal name Burks, Robert E
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Book
Source of classification or shelving scheme Dewey Decimal Classification
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code Bill No Bill Date Home library Current library Shelving location Date acquired Source of acquisition Cost, normal purchase price Total Checkouts Full call number Accession Number Date last seen Copy number Cost, replacement price Price effective from Koha item type
    Dewey Decimal Classification     Operations Management & Quantitative Techniques 1189152 11-03-2025 Indian Institute of Management LRC Indian Institute of Management LRC General Stacks 03/20/2025 Atlantic Publishers & Distributors 3254.80   658.403 FOX 007958 03/20/2025 1 5007.39 03/20/2025 Book

©2025-2026 Pragyata: Learning Resource Centre. All Rights Reserved.
Indian Institute of Management Bodh Gaya
Uruvela, Prabandh Vihar, Bodh Gaya
Gaya, 824234, Bihar, India

Powered by Koha