Mastering marketing data science: (Record no. 8946)

MARC details
000 -LEADER
fixed length control field 08095nam a22002057a 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250505163314.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250505b |||||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781394258710
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 658.8
Item number BRO
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Brown, Iain
245 ## - TITLE STATEMENT
Title Mastering marketing data science:
Remainder of title a comprehensive guide for today's marketers
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Name of publisher, distributor, etc. John Wiley Sons, Ltd.
Place of publication, distribution, etc. Hoboken
Date of publication, distribution, etc. 2025
300 ## - PHYSICAL DESCRIPTION
Extent xv, 414 p.
365 ## - TRADE PRICE
Price type code USD
Price amount 75.00
500 ## - GENERAL NOTE
General note Table of contents:<br/>Preface xi<br/><br/>Acknowledgments xiii<br/><br/>About the Author xv<br/><br/>Chapter 1 Introduction to Marketing Data Science 1<br/><br/>1.1 What Is Marketing Data Science? 2<br/><br/>1.2 The Role of Data Science in Marketing 4<br/><br/>1.3 Marketing Analytics Versus Data Science 5<br/><br/>1.4 Key Concepts and Terminology 7<br/><br/>1.5 Structure of This Book 9<br/><br/>1.6 Practical Example 1: Applying Data Science to Improve Cross-Selling in a Retail Bank Marketing Department 11<br/><br/>1.7 Practical Example 2: The Impact of Data Science on a Marketing Campaign 13<br/><br/>1.8 Conclusion 15<br/><br/>1.9 References 15<br/><br/>Chapter 2 Data Collection and Preparation 17<br/><br/>2.1 Introduction 18<br/><br/>2.2 Data Sources in Marketing: Evolution and the Emergence of Big Data 19<br/><br/>2.3 Data Collection Methods 23<br/><br/>2.4 Data Preparation 25<br/><br/>2.5 Practical Example: Collecting and Preparing Data for a Customer Churn Analysis 39<br/><br/>2.6 Conclusion 41<br/><br/>2.7 References 41<br/><br/>Exercise 2.1: Data Cleaning and Transformation 43<br/><br/>Exercise 2.2: Data Aggregation and Reduction 45<br/><br/>Chapter 3 Descriptive Analytics in Marketing 49<br/><br/>3.1 Introduction 50<br/><br/>3.2 Overview of Descriptive Analytics 51<br/><br/>3.3 Descriptive Statistics for Marketing Data 52<br/><br/>3.4 Data Visualization Techniques 56<br/><br/>3.5 Exploratory Data Analysis in Marketing 60<br/><br/>3.6 Analyzing Marketing Campaign Performance 65<br/><br/>3.7 Practical Example: Descriptive Analytics for a Beverage Company’s Social Media Marketing Campaign 68<br/><br/>3.8 Conclusion 70<br/><br/>3.9 References 71<br/><br/>Exercise 3.1: Descriptive Analysis of Marketing Data 72<br/><br/>Exercise 3.2: Data Visualization and Interpretation 76<br/><br/>Chapter 4 Inferential Analytics and Hypothesis Testing 81<br/><br/>4.1 Introduction 82<br/><br/>4.2 Inferential Analytics in Marketing 82<br/><br/>4.3 Confidence Intervals 92<br/><br/>4.4 A/B Testing in Marketing 95<br/><br/>4.5 Hypothesis Testing in Marketing 101<br/><br/>4.6 Customer Segmentation and Processing 106<br/><br/>4.7 Practical Examples: Inferential Analytics for Customer Segmentation and Hypothesis Testing for Marketing Campaign Performance 115<br/><br/>4.8 Conclusion 119<br/><br/>4.9 References 120<br/><br/>Exercise 4.1: Bayesian Inference for Personalized Marketing 122<br/><br/>Exercise 4.2: A/B Testing for Marketing Campaign Evaluation 124<br/><br/>Chapter 5 Predictive Analytics and Machine Learning 129<br/><br/>5.1 Introduction 130<br/><br/>5.2 Predictive Analytics Techniques 132<br/><br/>5.3 Machine Learning Techniques 135<br/><br/>5.4 Model Evaluation and Selection 144<br/><br/>5.5 Churn Prediction, Customer Lifetime Value, and Propensity Modeling 150<br/><br/>5.6 Market Basket Analysis and Recommender Systems 154<br/><br/>5.7 Practical Examples: Predictive Analytics and Machine Learning in Marketing 158<br/><br/>5.8 Conclusion 164<br/><br/>5.9 References 165<br/><br/>Exercise 5.1: Churn Prediction Model 167<br/><br/>Exercise 5.2: Predict Weekly Sales 170<br/><br/>Chapter 6 Natural Language Processing in Marketing 173<br/><br/>6.0 Beginner-Friendly Introduction to Natural Language Processing in Marketing 174<br/><br/>6.1 Introduction to Natural Language Processing 174<br/><br/>6.2 Text Preprocessing and Feature Extraction in Marketing Natural Language Processing 178<br/><br/>6.3 Key Natural Language Processing Techniques for Marketing 182<br/><br/>6.4 Chatbots and Voice Assistants in Marketing 188<br/><br/>6.5 Practical Examples of Natural Language Processing in Marketing 192<br/><br/>6.6 Conclusion 196<br/><br/>6.7 References 197<br/><br/>Exercise 6.1: Sentiment Analysis 199<br/><br/>Exercise 6.2: Text Classification 200 <br/><br/>Chapter 7 Social Media Analytics and Web Analytics 203<br/><br/>7.1 Introduction 204<br/><br/>7.2 Social Network Analysis 204<br/><br/>7.3 Web Analytics Tools and Metrics 212<br/><br/>7.4 Social Media Listening and Tracking 221<br/><br/>7.5 Conversion Rate Optimization 227<br/><br/>7.6 Conclusion 232<br/><br/>7.7 References 233<br/><br/>Exercise 7.1: Social Network Analysis (SNA) in Marketing 235<br/><br/>Exercise 7.2: Web Analytics for Marketing Insights 238<br/><br/>Chapter 8 Marketing Mix Modeling and Attribution 243<br/><br/>8.1 Introduction 244<br/><br/>8.2 Marketing Mix Modeling Concepts 244<br/><br/>8.3 Data-Driven Attribution Models 251<br/><br/>8.4 Multi-Touch Attribution 256<br/><br/>8.5 Return on Marketing Investment 261<br/><br/>8.6 Conclusion 266<br/><br/>8.7 References 266<br/><br/>Exercise 8.1: Marketing Mix Modeling (MMM) 268<br/><br/>Exercise 8.2: Data- Driven Attribution 271<br/><br/>Chapter 9 Customer Journey Analytics 275<br/><br/>9.1 Introduction 276<br/><br/>9.2 Customer Journey Mapping 276<br/><br/>9.3 Touchpoint Analysis 280<br/><br/>9.4 Cross-Channel Marketing Optimization 286<br/><br/>9.5 Path to Purchase and Attribution Analysis 291<br/><br/>9.6 Conclusion 296<br/><br/>9.7 References 296<br/><br/>Exercise 9.1: Creating a Customer Journey Map 298<br/><br/>Exercise 9.2: Touchpoint Effectiveness Analysis 301<br/><br/>Chapter 10 Experimental Design in Marketing 305<br/><br/>10.1 Introduction 306<br/><br/>10.2 Design of Experiments 306<br/><br/>10.3 Fractional Factorial Designs 310<br/><br/>10.4 Multi-Armed Bandits 315<br/><br/>10.5 Online and Offline Experiments 320<br/><br/>10.6 Conclusion 324<br/><br/>10.7 References 325<br/><br/>Exercise 10.1: Analyzing a Simple A/B Test 327<br/><br/>Exercise 10.2: Fractional Factorial Design in Ad Optimization 328<br/><br/>Chapter 11 Big Data Technologies and Real-Time Analytics 331<br/><br/>11.1 Introduction 332<br/><br/>11.2 Big Data 332<br/><br/>11.3 Distributed Computing Frameworks 336<br/><br/>11.4 Real-Time Analytics Tools and Techniques 343<br/><br/>11.5 Personalization and Real-Time Marketing 348<br/><br/>11.6 Conclusion 353<br/><br/>11.7 References 354<br/><br/>Chapter 12 Generative Artificial Intelligence and Its Applications in Marketing 357<br/><br/>12.1 Introduction 358<br/><br/>12.2 Understanding Generative Artificial Intelligence: Basics and Principles 359<br/><br/>12.3 Implementing Generative Artificial Intelligence in Content Creation and Personalization 364<br/><br/>12.4 Generative Artificial Intelligence in Predictive Analytics and Customer Behavior Modeling 367<br/><br/>12.5 Ethical Considerations and Future Prospects of Generative Artificial Intelligence in Marketing 372<br/><br/>12.6 Conclusion 375<br/><br/>12.7 References 376<br/><br/>Chapter 13 Ethics, Privacy, and the Future of Marketing Data Science 379<br/><br/>13.1 Introduction 380<br/><br/>13.2 Ethical Considerations in Marketing Data Science 380<br/><br/>13.3 Data Privacy Regulations 386<br/><br/>13.4 Bias, Fairness, and Transparency 391<br/><br/>13.5 Emerging Trends and the Future of Marketing Data Science 395<br/><br/>13.6 Conclusion 399<br/><br/>13.7 References 400<br/><br/>About the Website 403<br/><br/>Index 405<br/>[https://www.wiley.com/en-us/Mastering+Marketing+Data+Science%3A+A+Comprehensive+Guide+for+Today's+Marketers-p-9781394258710#tableofcontents-section]
520 ## - SUMMARY, ETC.
Summary, etc. Unlock the Power of Data: Transform Your Marketing Strategies with Data Science<br/><br/>In the digital age, understanding the symbiosis between marketing and data science is not just an advantage; it's a necessity. In Mastering Marketing Data Science: A Comprehensive Guide for Today's Marketers, Dr. Iain Brown, a leading expert in data science and marketing analytics, offers a comprehensive journey through the cutting-edge methodologies and applications that are defining the future of marketing. This book bridges the gap between theoretical data science concepts and their practical applications in marketing, providing readers with the tools and insights needed to elevate their strategies in a data-driven world. Whether you're a master's student, a marketing professional, or a data scientist keen on applying your skills in a marketing context, this guide will empower you with a deep understanding of marketing data science principles and the competence to apply these principles effectively.<br/>(https://www.wiley.com/en-us/Mastering+Marketing+Data+Science%3A+A+Comprehensive+Guide+for+Today's+Marketers-p-9781394258710#description-section)
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Marketing
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Data science
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Book
Source of classification or shelving scheme Dewey Decimal Classification
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code Bill No Bill Date Home library Current library Shelving location Date acquired Source of acquisition Cost, normal purchase price Total Checkouts Full call number Accession Number Date last seen Copy number Cost, replacement price Price effective from Koha item type
    Dewey Decimal Classification     Marketing 1189614 19-03-2025 Indian Institute of Management LRC Indian Institute of Management LRC General Stacks 03/28/2025 Atlantic Publishers & Distributors 4309.50   658.8 BRO 008541 03/28/2025 1 6630.00 03/28/2025 Book

©2025-2026 Pragyata: Learning Resource Centre. All Rights Reserved.
Indian Institute of Management Bodh Gaya
Uruvela, Prabandh Vihar, Bodh Gaya
Gaya, 824234, Bihar, India

Powered by Koha