Deep learning: (Record no. 10075)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 04690nam a2200217 4500 |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20250718224331.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 250718b |||||||| |||| 00| 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9781119861867 |
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 006.31 |
Item number | MAR |
100 ## - MAIN ENTRY--PERSONAL NAME | |
Personal name | Martinez-Ramon, Manel |
245 ## - TITLE STATEMENT | |
Title | Deep learning: |
Remainder of title | a practical introduction |
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) | |
Name of publisher, distributor, etc. | John Wiley & Sons Ltd |
Place of publication, distribution, etc. | Hoboken |
Date of publication, distribution, etc. | 2024 |
300 ## - PHYSICAL DESCRIPTION | |
Extent | xxiii, 392 p. |
365 ## - TRADE PRICE | |
Price type code | USD |
Price amount | 110.00 |
500 ## - GENERAL NOTE | |
General note | Table of contents:<br/>About the Authors xv<br/><br/>Foreword xvii<br/><br/>Preface xix<br/><br/>Acknowledgment xxi<br/><br/>About the Companion Website xxiii<br/><br/>1 The Multilayer Perceptron 1<br/><br/>1.1 Introduction 1<br/><br/>1.2 The Concept of Neuron 2<br/><br/>1.3 Structure of a Neural Network 14<br/><br/>1.4 Activations 21<br/><br/>1.5 Training a Multilayer Perceptron 22<br/><br/>1.6 Conclusion 37<br/><br/>2 Training Practicalities 41<br/><br/>2.1 Introduction 41<br/><br/>2.2 Generalization and Overfitting 42<br/><br/>2.3 Regularization Techniques 45<br/><br/>2.4 Normalization Techniques 50<br/><br/>2.5 Optimizers 52<br/><br/>2.6 Conclusion 58<br/><br/>3 Deep Learning Tools 61<br/><br/>3.1 Python: An Overview 61<br/><br/>3.2 NumPy 72<br/><br/>3.3 Matplotlib 83<br/><br/>3.4 Scipy 97<br/><br/>3.5 Scikit-Learn 107<br/><br/>3.6 Pandas 116<br/><br/>3.7 Seaborn 125<br/><br/>3.8 Python Libraries for NLP 131<br/><br/>3.9 TensorFlow 138<br/><br/>3.10 Keras 141<br/><br/>3.11 Pytorch 144<br/><br/>3.12 Conclusion 149<br/><br/>4 Convolutional Neural Networks 153<br/><br/>4.1 Introduction 153<br/><br/>4.2 Elements of a Convolutional Neural Network 153<br/><br/>4.3 Training a CNN 160<br/><br/>4.4 Extensions of the CNN 166<br/><br/>4.5 Conclusion 184<br/><br/>5 Recurrent Neural Networks 187<br/><br/>5.1 Introduction 187<br/><br/>5.2 RNN Architecture 188<br/><br/>5.3 Training an RNN 191<br/><br/>5.4 Long-Term Dependencies: Vanishing and Exploding Gradients 199<br/><br/>5.5 Deep RNN 201<br/><br/>5.6 Bidirectional RNN 203<br/><br/>5.7 Long Short-Term Memory Networks 204<br/><br/>5.8 Gated Recurrent Units 218<br/><br/>5.9 Conclusion 221<br/><br/>6 Attention Networks and Transformers 225<br/><br/>6.1 Introduction 225<br/><br/>6.2 Attention Mechanisms 227<br/><br/>6.3 Transformers 242<br/><br/>6.4 BERT 249<br/><br/>6.5 GPT-2 256<br/><br/>6.6.1 Comparison between ViTs and CNNs 264<br/><br/>6.7 Conclusion 269<br/><br/>7 Deep Unsupervised Learning I 273<br/><br/>7.1 Introduction 273<br/><br/>7.2 Restricted Boltzmann Machines 274<br/><br/>7.3 Deep Belief Networks 278<br/><br/>7.4 Autoencoders 279<br/><br/>7.5 Undercomplete Autoencoder 284<br/><br/>7.6 Sparse Autoencoder 285<br/><br/>7.7 Denoising Autoencoders 287<br/><br/>7.8 Convolutional Autoencoder 288<br/><br/>7.9 Variational Autoencoders 291<br/><br/>7.10 Conclusion 297<br/><br/>8 Deep Unsupervised Learning II 301<br/><br/>8.1 Introduction 301<br/><br/>8.2 Elements of GAN 303<br/><br/>8.3 Training a GAN 305<br/><br/>8.4 Wasserstein GAN 309<br/><br/>8.5 DCGAN 312<br/><br/>8.6 cGAN 316<br/><br/>8.7 CycleGAN 318<br/><br/>8.8 StyleGAN 323<br/><br/>8.9 StackGAN 328<br/><br/>8.10 Diffusion Models 333<br/><br/>8.11 Conclusion 338<br/><br/>9 Deep Bayesian Networks 341<br/><br/>9.1 Introduction 341<br/><br/>9.2 Bayesian Models 342<br/><br/>9.3 Bayesian Inference Methods for Deep Learning 344<br/><br/>9.4 Conclusion 352<br/><br/>Problems 353<br/><br/>List of Acronyms 355<br/><br/>Notation 359<br/><br/>Bibliography 365<br/><br/>Index 387<br/><br/>[https://www.wiley.com/en-us/Deep+Learning%3A+A+Practical+Introduction-p-9781119861867#tableofcontents-section] |
520 ## - SUMMARY, ETC. | |
Summary, etc. | An engaging and accessible introduction to deep learning perfect for students and professionals<br/><br/>In Deep Learning: A Practical Introduction, a team of distinguished researchers delivers a book complete with coverage of the theoretical and practical elements of deep learning. The book includes extensive examples, end-of-chapter exercises, homework, exam material, and a GitHub repository containing code and data for all provided examples.<br/><br/>Combining contemporary deep learning theory with state-of-the-art tools, the chapters are structured to maximize accessibility for both beginning and intermediate students. The authors have included coverage of TensorFlow, Keras, and Pytorch. Readers will also find:<br/><br/>Thorough introductions to deep learning and deep learning tools<br/>Comprehensive explorations of convolutional neural networks, including discussions of their elements, operation, training, and architectures<br/>Practical discussions of recurrent neural networks and non-supervised approaches to deep learning<br/>Fulsome treatments of generative adversarial networks as well as deep Bayesian neural networks<br/>Perfect for undergraduate and graduate students studying computer vision, computer science, artificial intelligence, and neural networks, Deep Learning: A Practical Introduction will also benefit practitioners and researchers in the fields of deep learning and machine learning in general.<br/><br/>(https://www.wiley.com/en-us/Deep+Learning%3A+A+Practical+Introduction-p-9781119861867) |
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name as entry element | Deep Learning |
700 ## - ADDED ENTRY--PERSONAL NAME | |
Personal name | Ajith, Meenu |
700 ## - ADDED ENTRY--PERSONAL NAME | |
Personal name | Rajendra Kurup, Aswathy |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Koha item type | Book |
Source of classification or shelving scheme | Dewey Decimal Classification |
Withdrawn status | Lost status | Source of classification or shelving scheme | Damaged status | Not for loan | Collection code | Bill No | Bill Date | Home library | Current library | Shelving location | Date acquired | Source of acquisition | Cost, normal purchase price | Total Checkouts | Full call number | Accession Number | Date last seen | Copy number | Cost, replacement price | Price effective from | Koha item type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dewey Decimal Classification | IT & Decisions Sciences | TB909 | 09-07-2025 | Indian Institute of Management LRC | Indian Institute of Management LRC | General Stacks | 07/16/2025 | Technical Bureau India Pvt. Ltd. | 6334.90 | 006.31 MAR | 008870 | 07/16/2025 | 1 | 9746.00 | 07/16/2025 | Book |