Doing data science in R:
Andrews, Mark
Doing data science in R: an introduction for social scientists - London Sage Publications Ltd. 2021 - vi, 626 p.
Table of content
Chapter 1: Data Analysis And Data Science Chapter 2: Introduction To R Chapter 3: Data Wrangling Chapter 4: Data Visualization Chapter 5: Exploratory Data Analysis Chapter 6: Programming In R Chapter 7: Reproducible Data Analysis Chapter 8: Statistical Models and Statistical Inference Chapter 9: Normal Linear Models Chapter 10: Logistic Regression Chapter 11: Generalized Linear Models for Count Data Chapter 12: Multilevel Models Chapter 13: Nonlinear Regression Chapter 14: Structural Equation Modelling Chapter 15: High Performance Computing with R Chapter 16: Interactive Web Apps with Shiny Chapter 17: Probabilistic Modelling with Stan
This approachable introduction to doing data science in R provides step-by-step advice on using the tools and statistical methods to carry out data analysis. Introducing the fundamentals of data science and R before moving into more advanced topics like Multilevel Models and Probabilistic Modelling with Stan, it builds knowledge and skills gradually.
This book:
Focuses on providing practical guidance for all aspects, helping readers get to grips with the tools, software, and statistical methods needed to provide the right type and level of analysis their data requires
Explores the foundations of data science and breaks down the processes involved, focusing on the link between data science and practical social science skills
Introduces R at the outset and includes extensive worked examples and R code every step of the way, ensuring students see the value of R and its connection to methods while providing hands-on practice in the software
Provides examples and datasets from different disciplines and locations demonstrate the widespread relevance, possible applications, and impact of data science across the social sciences
9781526486776
R (Computer program language)
Big data
Data mining
Social sciences--Research--Data processing
006.312 / AND
Doing data science in R: an introduction for social scientists - London Sage Publications Ltd. 2021 - vi, 626 p.
Table of content
Chapter 1: Data Analysis And Data Science Chapter 2: Introduction To R Chapter 3: Data Wrangling Chapter 4: Data Visualization Chapter 5: Exploratory Data Analysis Chapter 6: Programming In R Chapter 7: Reproducible Data Analysis Chapter 8: Statistical Models and Statistical Inference Chapter 9: Normal Linear Models Chapter 10: Logistic Regression Chapter 11: Generalized Linear Models for Count Data Chapter 12: Multilevel Models Chapter 13: Nonlinear Regression Chapter 14: Structural Equation Modelling Chapter 15: High Performance Computing with R Chapter 16: Interactive Web Apps with Shiny Chapter 17: Probabilistic Modelling with Stan
This approachable introduction to doing data science in R provides step-by-step advice on using the tools and statistical methods to carry out data analysis. Introducing the fundamentals of data science and R before moving into more advanced topics like Multilevel Models and Probabilistic Modelling with Stan, it builds knowledge and skills gradually.
This book:
Focuses on providing practical guidance for all aspects, helping readers get to grips with the tools, software, and statistical methods needed to provide the right type and level of analysis their data requires
Explores the foundations of data science and breaks down the processes involved, focusing on the link between data science and practical social science skills
Introduces R at the outset and includes extensive worked examples and R code every step of the way, ensuring students see the value of R and its connection to methods while providing hands-on practice in the software
Provides examples and datasets from different disciplines and locations demonstrate the widespread relevance, possible applications, and impact of data science across the social sciences
9781526486776
R (Computer program language)
Big data
Data mining
Social sciences--Research--Data processing
006.312 / AND