000 02628nam a22002177a 4500
005 20250103183408.0
008 250103b |||||||| |||| 00| 0 eng d
020 _a9781944660512
082 _a519.1
_bCHE
100 _aChen, Mu-Fa
_920106
245 _aIntroduction to stochastic processes
260 _bWorld Scientific Publishing
_aSingapore
_c2023
300 _axiii, 230 p.
365 _aINR
_b1295.00
490 _aWorld Scientific Series on Probability Theory and Its Applications : Vol. 2
520 _aThe objective of this book is to introduce the elements of stochastic processes in a rather concise manner where we present the two most important parts — Markov chains and stochastic analysis. The readers are led directly to the core of the main topics to be treated in the context. Further details and additional materials are left to a section containing abundant exercises for further reading and studying. In the part on Markov chains, the focus is on the ergodicity. By using the minimal nonnegative solution method, we deal with the recurrence and various types of ergodicity. This is done step by step, from finite state spaces to denumerable state spaces, and from discrete time to continuous time. The methods of proofs adopt modern techniques, such as coupling and duality methods. Some very new results are included, such as the estimate of the spectral gap. The structure and proofs in the first part are rather different from other existing textbooks on Markov chains. In the part on stochastic analysis, we cover the martingale theory and Brownian motions, the stochastic integral and stochastic differential equations with emphasis on one dimension, and the multidimensional stochastic integral and stochastic equation based on semimartingales. We introduce three important topics here: the Feynman–Kac formula, random time transform and Girsanov transform. As an essential application of the probability theory in classical mathematics, we also deal with the famous Brunn–Minkowski inequality in convex geometry. This book also features modern probability theory that is used in different fields, such as MCMC, or even deterministic areas: convex geometry and number theory. It provides a new and direct routine for students going through the classical Markov chains to the modern stochastic analysis. (https://www.worldscientific.com/worldscibooks/10.1142/9903?srsltid=AfmBOoopnAMqYIUW_LQCMrB_jOj2gx530T5QcLQdJvYMKCeLdPYKmm1i#t=aboutBook)
650 _aStochastic processes
_9814
650 _aMarkov renewal theory
_920107
700 _aMao, Yong-Hua
_920108
942 _cBK
_2ddc
999 _c7759
_d7759