000 | 02591nam a22002057a 4500 | ||
---|---|---|---|
999 |
_c5009 _d5009 |
||
005 | 20230322104721.0 | ||
008 | 230322b ||||| |||| 00| 0 eng d | ||
020 | _a9789391540463 | ||
082 |
_a006.31 _bRAO |
||
100 |
_aRao, R. Nageswara _911445 |
||
245 | _aMachine learning in data science using Python | ||
260 |
_bDreamtech Publisher _aNew Delhi _c2022 |
||
300 | _axxx, 926 p. | ||
365 |
_aINR _b899.00 |
||
504 | _aTable of content Part 1: Python for Machine Learning and Data Science Chapter 1: Fundamentals of Python Chapter 2: Datatypes in Python 19 Chapter 3: Operators in Python Chapter 4: Input and Output Chapter 5: Control Statements Chapter 6: Numpy Arrays Chapter 7: Functions in Python Chapter 8: Modules, Packages and Libraries Chapter 9: Introduction to OOPS Chapter 10: Classes, Objects and Methods Chapter 11: Data Storage in Files Chapter 12: Data Analysis Using Pandas Chapter 13 Advanced Data Analysis using Pandas Chapter 14: Data Visualization using Matplotlib Chapter 15: Data Visualization using Seaborn Part 2: Machine Learning in Data Science 747 Chapter 16: Introduction to Machine Learning Chapter 17: Exploratory Data Analysis (EDA) Chapter 18: Outliers Chapter 19: Simple Linear Regression Chapter 20: Multiple Linear Regression Chapter 21: One Hot Encoding Chapter 22: Polynomial Linear Regression Chapter 23: Ridge Regression Chapter 24: Lasso Regression Chapter 25: Elasticnet Regression Chapter 26: Logistic Regression Chapter 27: Support Vector Machine (SVM) Chapter 28: Naive Bayes Classification Chapter 29: KNN Classifier Chapter 30: Decision Trees Chapter 31: Random Forest Chapter 32: K-Means Clustering Chapter 33: Apriori Algorithm Chapter 34: Principal Component Analysis (PCA) Chapter 35: K-Fold Cross Validation Chapter 36: Model Selection Part 3: Deep Learning and AI in Data Science Chapter 37: Introduction to Deep Learning Chapter 38: Creating Neural Networks in Python Chapter 39: Tensorflow and Keras Chapter 40: Creating ANN Using Tensorflow and Keras Chapter 41: Convolutional Neural Network (CNN) Chapter 42: Recurrent Neural Network (RNN) Chapter 43: Natural Language Processing (NLP) Chapter 44: Computer Vision | ||
520 | _aThis book is useful for students and IT professionals who want to make their career in the field of Machine Learning and Data Science. | ||
650 |
_aMachine learning _92343 |
||
650 |
_aPython - Programming Language _95196 |
||
942 |
_2ddc _cBK |