000 01689nam a22002297a 4500
999 _c223
_d223
005 20190827185401.0
008 190827b ||||| |||| 00| 0 eng d
020 _a9789332535152
082 _a658.4032
_bAHU
100 _aAhuja, Ravindra K.
_9645
245 _aNetwork flows: theory, algorithms, and applications
260 _bPearson India Education Services Pvt. Ltd.
_aNew Delhi
_c2014
300 _axv, 846 p.
365 _aINR
_b939
504 _aTable of Content 1. Introduction. 2. Paths, Trees and Cycles. 3. Algorithm Design and Analysis. 4. Shortest Paths: Label Setting Algorithms. 5. Shortest Paths: Label Correcting Algorithms. 6. Maximum Flows: Basic Ideas. 7. Maximum Flows: Polynomial Algorithms. 8. Maximum Flows: Additional Topics. 9. Minimum Cost Flows: Basic Algorithms. 10. Minimum Cost Flows: Polynomial Algorithms. 11. Minimum Cost Flows: Network Simplex Algorithms. 12. Assignments and Matchings. 13. Minimum Spanning Trees. 14. Convex Cost Flows. 15. Generalized Flows. 16. Lagrangian Relaxation and Network Optimization. 17. Multicommodity Flows. 18. Computational Testing of Algorithms. 19. Additional Applications. Appendix A: Data Structures. Appendix B: NP-Completeness. Appendix C: Linear Programming.
520 _aA comprehensive introduction to network flows that brings together the classic and the contemporary aspects of the field, and provides an integrative view of theory, algorithms, and applications.
650 _aNetwork analysis (Planning)
_9646
650 _aMathematical optimization
_9647
700 _aMagnanti, Thomas L.
_9648
700 _aOrlin, James B.
_9649
942 _2ddc
_cBK