000 02614nam a22002657a 4500
999 _c1454
_d1454
005 20211208151150.0
008 211208b ||||| |||| 00| 0 eng d
020 _a9781071614174
082 _a519.5
_bJAM
100 _aJames, Gareth
_94435
245 _aAn introduction to statistical learning: with applications in R
250 _a2nd
260 _bSpringer
_aNew York
_c2021
300 _axv, 607 p.
365 _aEURO
_b84.99
504 _aTable of content Front Matter Pages i-xv PDF Introduction Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 1-14 Statistical Learning Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 15-57 Linear Regression Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 59-128 Classification Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 129-195 Resampling Methods Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 197-223 Linear Model Selection and Regularization Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 225-288 Moving Beyond Linearity Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 289-326 Tree-Based Methods Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 327-365 Support Vector Machines Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 367-402 Deep Learning Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 403-460 Survival Analysis and Censored Data Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 461-495 Unsupervised Learning Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 497-552 Multiple Testing Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 553-595
520 _aPresents an essential statistical learning toolkit for practitioners in science, industry, and other fields Demonstrates application of the statistical learning methods in R Includes new chapters on deep learning, survival analysis, and multiple testing Covers a range of topics, such as linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and deep learning Features extensive color graphics for a dynamic learning experience
650 _aMathematical statistics
_9837
650 _aR (Computer program language)
_91512
650 _aMathematical models
_9851
700 _aWitten, Daniela
_94436
700 _aHastie, Trevor
_94437
700 _aTibshirani, Robert
_94438
942 _2ddc
_cBK