000 | 02614nam a22002657a 4500 | ||
---|---|---|---|
999 |
_c1454 _d1454 |
||
005 | 20211208151150.0 | ||
008 | 211208b ||||| |||| 00| 0 eng d | ||
020 | _a9781071614174 | ||
082 |
_a519.5 _bJAM |
||
100 |
_aJames, Gareth _94435 |
||
245 | _aAn introduction to statistical learning: with applications in R | ||
250 | _a2nd | ||
260 |
_bSpringer _aNew York _c2021 |
||
300 | _axv, 607 p. | ||
365 |
_aEURO _b84.99 |
||
504 | _aTable of content Front Matter Pages i-xv PDF Introduction Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 1-14 Statistical Learning Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 15-57 Linear Regression Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 59-128 Classification Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 129-195 Resampling Methods Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 197-223 Linear Model Selection and Regularization Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 225-288 Moving Beyond Linearity Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 289-326 Tree-Based Methods Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 327-365 Support Vector Machines Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 367-402 Deep Learning Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 403-460 Survival Analysis and Censored Data Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 461-495 Unsupervised Learning Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 497-552 Multiple Testing Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani Pages 553-595 | ||
520 | _aPresents an essential statistical learning toolkit for practitioners in science, industry, and other fields Demonstrates application of the statistical learning methods in R Includes new chapters on deep learning, survival analysis, and multiple testing Covers a range of topics, such as linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and deep learning Features extensive color graphics for a dynamic learning experience | ||
650 |
_aMathematical statistics _9837 |
||
650 |
_aR (Computer program language) _91512 |
||
650 |
_aMathematical models _9851 |
||
700 |
_aWitten, Daniela _94436 |
||
700 |
_aHastie, Trevor _94437 |
||
700 |
_aTibshirani, Robert _94438 |
||
942 |
_2ddc _cBK |