Amazon cover image
Image from Amazon.com

Monte carlo simulation and resampling methods for social science

By: Material type: TextTextPublication details: Sage Publications, Inc. Los Angeles 2014Description: x, 293 pISBN:
  • 9781452288901
Subject(s): DDC classification:
  • 300.1518282 CAR
Summary: Description Taking the topics of a quantitative methodology course and illustrating them through Monte Carlo simulation, this book illustrates abstract principles, such as bias, efficiency, and measures of uncertainty in an intuitive, visual way. Instead of thinking in the abstract about what would happen to a particular estimator "in repeated samples," the book uses simulation to actually create those repeated samples and summarize the results. The book includes basic examples appropriate for students learning the material for the first time, as well as more advanced examples that a researcher might use to evaluate an estimator he or she was using in an actual research project. The book also covers a wide range of topics related to Monte Carlo simulation, such as resampling methods, simulations of substantive theory, simulation of quantities of interest (QI) from model results, and cross-validation.
List(s) this item appears in: Public Policy & General Management | Marketing
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode
Book Book Indian Institute of Management LRC General Stacks Public Policy & General Management 300.1518282 CAR (Browse shelf(Opens below)) 1 Available 001708

Table of content

1. Introduction 2. Probability 3. Introduction to R 4. Random Number Generation 5 .Statistical Simulation of the Linear Model 6. Simulating Generalized Linear Models 7. Testing Theory Using Simulation 8. Resampling Methods 9. Other Simulation-Based Methods 10. Final Thoughts

Description

Taking the topics of a quantitative methodology course and illustrating them through Monte Carlo simulation, this book illustrates abstract principles, such as bias, efficiency, and measures of uncertainty in an intuitive, visual way. Instead of thinking in the abstract about what would happen to a particular estimator "in repeated samples," the book uses simulation to actually create those repeated samples and summarize the results. The book includes basic examples appropriate for students learning the material for the first time, as well as more advanced examples that a researcher might use to evaluate an estimator he or she was using in an actual research project. The book also covers a wide range of topics related to Monte Carlo simulation, such as resampling methods, simulations of substantive theory, simulation of quantities of interest (QI) from model results, and cross-validation.

There are no comments on this title.

to post a comment.

©2019-2020 Learning Resource Centre, Indian Institute of Management Bodhgaya

Powered by Koha