Amazon cover image
Image from Amazon.com

Statistical methods for handling incomplete data

By: Material type: TextTextPublication details: CRC Press London 2022Edition: 2ndDescription: 364 pISBN:
  • 9781032118130
Subject(s): DDC classification:
  • 519.54 KIM
Summary: Due to recent theoretical findings and advances in statistical computing, there has been a rapid development of techniques and applications in the area of missing data analysis. Statistical Methods for Handling Incomplete Data covers the most up-to-date statistical theories and computational methods for analyzing incomplete data.   Features Uses the mean score equation as a building block for developing the theory for missing data analysis Provides comprehensive coverage of computational techniques for missing data analysis Presents a rigorous treatment of imputation techniques, including multiple imputation fractional imputation Explores the most recent advances of the propensity score method and estimation techniques for nonignorable missing data Describes a survey sampling application Updated with a new chapter on Data Integration Now includes a chapter on Advanced Topics, including kernel ridge regression imputation and neural network model imputation The book is primarily aimed at researchers and graduate students from statistics, and could be used as a reference by applied researchers with a good quantitative background. It includes many real data examples and simulated examples to help readers understand the methodologies. (https://www.routledge.com/Statistical-Methods-for-Handling-Incomplete-Data/Kim-Shao/p/book/9781032118130)
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode
Book Book Indian Institute of Management LRC General Stacks Operations Management & Quantitative Techniques 519.54 KIM (Browse shelf(Opens below)) 1 Available 006249

Table of Contents:

1. Introduction
2. Likelihood-based Approach
3. Computation
4. Imputation
5. Multiple Imputation
6. Fractional Imputation
7. Propensity Scoring Approach
8. Nonignorable Missing Data
9. Longitudinal and Clustered Data
10. Application to Survey Sampling
11. Data Integration
12. Advanced Topics

Due to recent theoretical findings and advances in statistical computing, there has been a rapid development of techniques and applications in the area of missing data analysis. Statistical Methods for Handling Incomplete Data covers the most up-to-date statistical theories and computational methods for analyzing incomplete data.

 

Features

Uses the mean score equation as a building block for developing the theory for missing data analysis
Provides comprehensive coverage of computational techniques for missing data analysis
Presents a rigorous treatment of imputation techniques, including multiple imputation fractional imputation
Explores the most recent advances of the propensity score method and estimation techniques for nonignorable missing data
Describes a survey sampling application
Updated with a new chapter on Data Integration
Now includes a chapter on Advanced Topics, including kernel ridge regression imputation and neural network model imputation
The book is primarily aimed at researchers and graduate students from statistics, and could be used as a reference by applied researchers with a good quantitative background. It includes many real data examples and simulated examples to help readers understand the methodologies.

(https://www.routledge.com/Statistical-Methods-for-Handling-Incomplete-Data/Kim-Shao/p/book/9781032118130)

There are no comments on this title.

to post a comment.

©2019-2020 Learning Resource Centre, Indian Institute of Management Bodhgaya

Powered by Koha