Amazon cover image
Image from Amazon.com

Bayesian statistics for beginners: a step-by-step approach

By: Contributor(s): Material type: TextTextPublication details: Oxford University Press Oxford 2019Description: x, 419 pISBN:
  • 9780198841302
Subject(s): DDC classification:
  • 519.542 DON
Summary: Bayesian Statistics for Beginners is an entry-level book on Bayesian statistics. It is like no other math book you’ve read. It is written for readers who do not have advanced degrees in mathematics and who may struggle with mathematical notation, yet need to understand the basics of Bayesian inference for scientific investigations. Intended as a “quick read,” the entire book is written as an informal, humorous conversation between the reader and writer—a natural way to present material for those new to Bayesian inference. The most impressive feature of the book is the sheer length of the journey, from introductory probability to Bayesian inference and applications, including Markov Chain Monte Carlo approaches for parameter estimation, Bayesian belief networks, and decision trees. Detailed examples in each chapter contribute a great deal, where Bayes’ Theorem is at the front and center with transparent, step-by-step calculations. A vast amount of material is covered in a lighthearted manner; the journey is relatively pain-free. The book is intended to jump-start a reader’s understanding of probability, inference, and statistical vocabulary that will set the stage for continued learning. Other features include multiple links to web-based material, an annotated bibliography, and detailed, step-by-step appendices. (https://academic.oup.com/book/41940)
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode
Book Book Indian Institute of Management LRC General Stacks Operations Management & Quantitative Techniques 519.542 DON (Browse shelf(Opens below)) 1 Available 006225

Bayesian Statistics for Beginners is an entry-level book on Bayesian statistics. It is like no other math book you’ve read. It is written for readers who do not have advanced degrees in mathematics and who may struggle with mathematical notation, yet need to understand the basics of Bayesian inference for scientific investigations. Intended as a “quick read,” the entire book is written as an informal, humorous conversation between the reader and writer—a natural way to present material for those new to Bayesian inference. The most impressive feature of the book is the sheer length of the journey, from introductory probability to Bayesian inference and applications, including Markov Chain Monte Carlo approaches for parameter estimation, Bayesian belief networks, and decision trees. Detailed examples in each chapter contribute a great deal, where Bayes’ Theorem is at the front and center with transparent, step-by-step calculations. A vast amount of material is covered in a lighthearted manner; the journey is relatively pain-free. The book is intended to jump-start a reader’s understanding of probability, inference, and statistical vocabulary that will set the stage for continued learning. Other features include multiple links to web-based material, an annotated bibliography, and detailed, step-by-step appendices.

(https://academic.oup.com/book/41940)

There are no comments on this title.

to post a comment.

©2019-2020 Learning Resource Centre, Indian Institute of Management Bodhgaya

Powered by Koha