Amazon cover image
Image from Amazon.com

Bayesian estimation of DSGE models

By: Contributor(s): Material type: TextTextPublication details: Princeton University Press New Jersey 2016Description: xix, 275 pISBN:
  • 9780691161082
Subject(s): DDC classification:
  • 339.5015 HER
Summary: Dynamic stochastic general equilibrium (DSGE) models have become one of the workhorses of modern macroeconomics and are extensively used for academic research as well as forecasting and policy analysis at central banks. This book introduces readers to state-of-the-art computational techniques used in the Bayesian analysis of DSGE models. The book covers Markov chain Monte Carlo techniques for linearized DSGE models, novel sequential Monte Carlo methods that can be used for parameter inference, and the estimation of nonlinear DSGE models based on particle filter approximations of the likelihood function. The theoretical foundations of the algorithms are discussed in depth, and detailed empirical applications and numerical illustrations are provided. The book also gives invaluable advice on how to tailor these algorithms to specific applications and assess the accuracy and reliability of the computations. Bayesian Estimation of DSGE Models is essential reading for graduate students, academic researchers, and practitioners at policy institutions
List(s) this item appears in: Public Policy & General Management
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode
Book Book Indian Institute of Management LRC General Stacks Public Policy & General Management 339.5015 HER (Browse shelf(Opens below)) 1 Checked out 10/12/2024 004097

Dynamic stochastic general equilibrium (DSGE) models have become one of the workhorses of modern macroeconomics and are extensively used for academic research as well as forecasting and policy analysis at central banks. This book introduces readers to state-of-the-art computational techniques used in the Bayesian analysis of DSGE models. The book covers Markov chain Monte Carlo techniques for linearized DSGE models, novel sequential Monte Carlo methods that can be used for parameter inference, and the estimation of nonlinear DSGE models based on particle filter approximations of the likelihood function. The theoretical foundations of the algorithms are discussed in depth, and detailed empirical applications and numerical illustrations are provided. The book also gives invaluable advice on how to tailor these algorithms to specific applications and assess the accuracy and reliability of the computations.

Bayesian Estimation of DSGE Models is essential reading for graduate students, academic researchers, and practitioners at policy institutions

There are no comments on this title.

to post a comment.

©2019-2020 Learning Resource Centre, Indian Institute of Management Bodhgaya

Powered by Koha