Amazon cover image
Image from Amazon.com

Foundations of data science

By: Contributor(s): Material type: TextTextPublication details: Cambridge University Press Cambridge 2021Description: viii, 424 pISBN:
  • 9781108485067
Subject(s): DDC classification:
  • 004 BLU
Summary: This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.
List(s) this item appears in: IT & Decision Sciences | Finance & Accounting
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode
Book Book Indian Institute of Management LRC General Stacks IT & Decisions Sciences 004 BLU (Browse shelf(Opens below)) 1 Available 003854

Table of Contents
1. Introduction
2. High-dimensional space
3. Best-fit subspaces and Singular Value Decomposition (SVD)
4. Random walks and Markov chains
5. Machine learning
6. Algorithms for massive data problems: streaming, sketching, and sampling
7. Clustering
8. Random graphs
9. Topic models, non-negative matrix factorization, hidden Markov models, and graphical models
10. Other topics
11. Wavelets
12. Appendix.

This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.

There are no comments on this title.

to post a comment.

©2019-2020 Learning Resource Centre, Indian Institute of Management Bodhgaya

Powered by Koha