15.4.1 A MIQP model to minimize TEV under a cardinality constraint 634
15.4.2 Good MILP model building: The role of tight model formulations 636
15.5 Conic optimization 642
15.5.1 Convex cones 644
15.5.2 Second-order cone programming 650
15.5.3 Semidefinite programming 653
15.6 Stochastic optimization 655
15.6.1 Chance-constrained LP models 656
15.6.2 Two-stage stochastic linear programming with recourse 657
15.6.3 Multistage stochastic linear programming with recourse 663
15.6.4 Scenario generation and stability in stochastic programming 670
15.7 Stochastic dynamic programming 675
15.7.1 The dynamic programming principle 676
15.7.2 Solving Bellman’s equation: The three curses of dimensionality 679
15.7.3 Application to pricing options with early exercise features 680
15.8 Decision rules for multistage SLPs 682
15.9 Worst-case robust models 686
15.9.1 Uncertain LPs: Polyhedral uncertainty 689
15.9.2 Uncertain LPs: Ellipsoidal uncertainty 690
15.10Nonlinear programming models in finance 691
15.10.1 Fixed-mix asset allocation 692
Problems 693
Further reading 695
Bibliography 696
16 Optimization Model Solving 699
16.1 Local methods for nonlinear programming 700
16.1.1 Unconstrained nonlinear programming 700
16.1.2 Penalty function methods 703
16.1.3 Lagrange multipliers and constraint qualification conditions 707
16.1.4 Duality theory 713
16.2 Global methods for nonlinear programming 715
16.2.1 Genetic algorithms 716
16.2.2 Particle swarm optimization 717
16.3 Linear programming 719
16.3.1 The simplex method 720
16.3.2 Duality in linear programming 723
16.3.3 Interior-point methods: Primal-dual barrier method for LP 726
16.4 Conic duality and interior-point methods 728
16.4.1 Conic duality 728
16.4.2 Interior-point methods for SOCP and SDP 731
16.5 Branch-and-bound methods for integer programming 732
16.5.1 A matheuristic approach: Fix-and-relax 735
16.6 Optimization software 736
16.6.1 Solvers 737
16.6.2 Interfacing through imperative programming languages 738
16.6.3 Interfacing through non-imperative algebraic languages 738
16.6.4 Additional interfaces 739
Problems 739
Further reading 740
Bibliography 741
Index 743
DESCRIPTION COVERS THE FUNDAMENTAL TOPICS IN MATHEMATICS, STATISTICS, AND FINANCIAL MANAGEMENT THAT ARE REQUIRED FOR A THOROUGH STUDY OF FINANCIAL MARKETS
This comprehensive yet accessible book introduces students to financial markets and delves into more advanced material at a steady pace while providing motivating examples, poignant remarks, counterexamples, ideological clashes, and intuitive traps throughout. Tempered by real-life cases and actual market structures, An Introduction to Financial Markets: A Quantitative Approach accentuates theory through quantitative modeling whenever and wherever necessary. It focuses on the lessons learned from timely subject matter such as the impact of the recent subprime mortgage storm, the collapse of LTCM, and the harsh criticism on risk management and innovative finance. The book also provides the necessary foundations in stochastic calculus and optimization, alongside financial modeling concepts that are illustrated with relevant and hands-on examples.
An Introduction to Financial Markets: A Quantitative Approach starts with a complete overview of the subject matter. It then moves on to sections covering fixed income assets, equity portfolios, derivatives, and advanced optimization models. This book’s balanced and broad view of the state-of-the-art in financial decision-making helps provide readers with all the background and modeling tools needed to make “honest money” and, in the process, to become a sound professional.
Stresses that gut feelings are not always sufficient and that “critical thinking” and real world applications are appropriate when dealing with complex social systems involving multiple players with conflicting incentives Features a related website that contains a solution manual for end-of-chapter problems Written in a modular style for tailored classroom use Bridges a gap for business and engineering students who are familiar with the problems involved, but are less familiar with the methodologies needed to make smart decisions An Introduction to Financial Markets: A Quantitative Approach offers a balance between the need to illustrate mathematics in action and the need to understand the real life context. It is an ideal text for a first course in financial markets or investments for business, economic, statistics, engineering, decision science, and management science students.
9781118014776
Finance--Mathematical models Financial engineering Business enterprises--Finance