Machine learning in data science using Python
Material type: TextPublication details: Dreamtech Publisher New Delhi 2022Description: xxx, 926 pISBN:- 9789391540463
- 006.31 RAO
Item type | Current library | Collection | Call number | Copy number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
Book | Indian Institute of Management LRC General Stacks | IT & Decisions Sciences | 006.31 RAO (Browse shelf(Opens below)) | 1 | Available | 004868 |
Table of content
Part 1: Python for Machine Learning and Data Science
Chapter 1: Fundamentals of Python
Chapter 2: Datatypes in Python 19
Chapter 3: Operators in Python
Chapter 4: Input and Output
Chapter 5: Control Statements
Chapter 6: Numpy Arrays
Chapter 7: Functions in Python
Chapter 8: Modules, Packages and Libraries
Chapter 9: Introduction to OOPS
Chapter 10: Classes, Objects and Methods
Chapter 11: Data Storage in Files
Chapter 12: Data Analysis Using Pandas
Chapter 13 Advanced Data Analysis using Pandas
Chapter 14: Data Visualization using Matplotlib
Chapter 15: Data Visualization using Seaborn
Part 2: Machine Learning in Data Science 747
Chapter 16: Introduction to Machine Learning
Chapter 17: Exploratory Data Analysis (EDA)
Chapter 18: Outliers
Chapter 19: Simple Linear Regression
Chapter 20: Multiple Linear Regression
Chapter 21: One Hot Encoding
Chapter 22: Polynomial Linear Regression
Chapter 23: Ridge Regression
Chapter 24: Lasso Regression
Chapter 25: Elasticnet Regression
Chapter 26: Logistic Regression
Chapter 27: Support Vector Machine (SVM)
Chapter 28: Naive Bayes Classification
Chapter 29: KNN Classifier
Chapter 30: Decision Trees
Chapter 31: Random Forest
Chapter 32: K-Means Clustering
Chapter 33: Apriori Algorithm
Chapter 34: Principal Component Analysis (PCA)
Chapter 35: K-Fold Cross Validation
Chapter 36: Model Selection
Part 3: Deep Learning and AI in Data Science
Chapter 37: Introduction to Deep Learning
Chapter 38: Creating Neural Networks in Python
Chapter 39: Tensorflow and Keras
Chapter 40: Creating ANN Using Tensorflow and Keras
Chapter 41: Convolutional Neural Network (CNN)
Chapter 42: Recurrent Neural Network (RNN)
Chapter 43: Natural Language Processing (NLP)
Chapter 44: Computer Vision
This book is useful for students and IT professionals who want to make their career in the field of Machine Learning and Data Science.
There are no comments on this title.