Amazon cover image
Image from Amazon.com

An introduction to IoT analytics

By: Material type: TextTextPublication details: CRC Press Boco Raton 2021Description: xvii, 354 pISBN:
  • 9780367686314
Subject(s): DDC classification:
  • 004.678 PER
Summary: This book covers techniques that can be used to analyze data from IoT sensors and addresses questions regarding the performance of an IoT system. It strikes a balance between practice and theory so one can learn how to apply these tools in practice with a good understanding of their inner workings. This is an introductory book for readers who have no familiarity with these techniques. The techniques presented in An Introduction to IoT Analytics come from the areas of machine learning, statistics, and operations research. Machine learning techniques are described that can be used to analyze IoT data generated from sensors for clustering, classification, and regression. The statistical techniques described can be used to carry out regression and forecasting of IoT sensor data and dimensionality reduction of data sets. Operations research is concerned with the performance of an IoT system by constructing a model of the system under study and then carrying out a what-if analysis. The book also describes simulation techniques.
List(s) this item appears in: IT & Decision Sciences | Public Policy & General Management
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode
Book Book Indian Institute of Management LRC General Stacks IT & Decisions Sciences 004.678 PER (Browse shelf(Opens below)) 1 Available 004201

Table of Contents
1. Introduction

2. Review of Probability Theory

3. Simulation Techniques

4. Hypothesis Testing

5. Multivariable Linear Regression

6. Time Series Forecasting

7. Dimensionality Reduction

8. Clustering Techniques

9. Classification Techniques

10. Artificial Neural Networks

11. Support Vector Machines

12. Hidden Markov Models

This book covers techniques that can be used to analyze data from IoT sensors and addresses questions regarding the performance of an IoT system. It strikes a balance between practice and theory so one can learn how to apply these tools in practice with a good understanding of their inner workings. This is an introductory book for readers who have no familiarity with these techniques.

The techniques presented in An Introduction to IoT Analytics come from the areas of machine learning, statistics, and operations research. Machine learning techniques are described that can be used to analyze IoT data generated from sensors for clustering, classification, and regression. The statistical techniques described can be used to carry out regression and forecasting of IoT sensor data and dimensionality reduction of data sets. Operations research is concerned with the performance of an IoT system by constructing a model of the system under study and then carrying out a what-if analysis. The book also describes simulation techniques.

There are no comments on this title.

to post a comment.

©2019-2020 Learning Resource Centre, Indian Institute of Management Bodhgaya

Powered by Koha