A tour of data science: learn R and Python in parallel
Material type: TextPublication details: CRC Press Boco Raton 2021Description: x, 206 pISBN:- 9780367895860
- 006.312 ZHA
Item type | Current library | Collection | Call number | Copy number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
Book | Indian Institute of Management LRC General Stacks | IT & Decisions Sciences | 006.312 ZHA (Browse shelf(Opens below)) | 1 | Available | 004199 |
Browsing Indian Institute of Management LRC shelves, Shelving location: General Stacks, Collection: IT & Decisions Sciences Close shelf browser (Hides shelf browser)
006.312 TAN Introduction to data mining | 006.312 ZAF Social media mining: an introduction | 006.312 ZAK Data mining and machine learning: | 006.312 ZHA A tour of data science: | 006.312 ZUM Practical data science with R | 006.32 ABD Responsible graph neural networks | 006.32 AGG Neural networks and deep learning: a textbook |
Table of Contents
Assumptions about the reader’s background
Book overview
Introduction to R/Python Programming
Calculator
Variable and Type
Functions
Control flows
Some built-in data structures
Revisit of variables
Object-oriented programming (OOP) in R/Python
Miscellaneous
More on R/Python Programming
Work with R/Python scripts
Debugging in R/Python
Benchmarking
Vectorization
Embarrassingly parallelism in R/Python
Evaluation strategy
Speed up with C/C++ in R/Python
A first impression of functional programming Miscellaneous
data.table and pandas
SQL
Get started with data.table and pandas
Indexing & selecting data
Add/Remove/Update
Group by
Join
Random Variables, Distributions & Linear Regression
A refresher on distributions
Inversion sampling & rejection sampling
Joint distribution & copula
Fit a distribution
Confidence interval
Hypothesis testing
Basics of linear regression
Ridge regression
Optimization in Practice
Convexity
Gradient descent
Root-finding
General purpose minimization tools in R/Python
Linear programming
Miscellaneous
Machine Learning - A gentle introduction
Supervised learning
Gradient boosting machine
Unsupervised learning
Reinforcement learning
Deep Q-Networks
Computational differentiation
Miscellaneous
A Tour of Data Science: Learn R and Python in Parallel covers the fundamentals of data science, including programming, statistics, optimization, and machine learning in a single short book. It does not cover everything, but rather, teaches the key concepts and topics in Data Science. It also covers two of the most popular programming languages used in Data Science, R and Python, in one source.
Key features:
Allows you to learn R and Python in parallel
Cover statistics, programming, optimization and predictive modelling, and the popular data manipulation tools – data.table and pandas
Provides a concise and accessible presentation
Includes machine learning algorithms implemented from scratch, linear regression, lasso, ridge, logistic regression, gradient boosting trees, etc.
Appealing to data scientists, statisticians, quantitative analysts, and others who want to learn programming with R and Python from a data science perspective.
There are no comments on this title.