Amazon cover image
Image from Amazon.com

Linear algebra and its applications

By: Contributor(s): Material type: TextTextPublication details: Cengage Learning India Pvt. Ltd. New Delhi 2007Edition: 4thDescription: 496 pISBN:
  • 9788131501726
Subject(s): DDC classification:
  • 512.5 STR
Summary: Renowned professor and author Gilbert Strang demonstrates that linear algebra is a fascinating subject by showing both its beauty and value. While the mathematics is there, the effort is not all concentrated on proofs. Strang's emphasis is on understanding. He explains concepts, rather than deduces. This book is written in an informal and personal style and teaches real mathematics. The gears change in Chapter 2 as students reach the introduction of vector spaces. Throughout the book, the theory is motivated and reinforced by genuine applications, allowing pure mathematicians to teach applied mathematics.
List(s) this item appears in: Operation & quantitative Techniques | Public Policy & General Management
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode
Book Book Indian Institute of Management LRC General Stacks Operations Management & Quantitative Techniques 512.5 STR (Browse shelf(Opens below)) 1 Available 000583
Browsing Indian Institute of Management LRC shelves, Shelving location: General Stacks, Collection: Operations Management & Quantitative Techniques Close shelf browser (Hides shelf browser)
512.5 LUE Linear and nonlinear programming 512.5 OLI Linear algebra 512.5 SPE Elementary linear algebra: a matrix approach 512.5 STR Linear algebra and its applications 512.89 WIL The compleat strategyst: being a primer on the theory of games of strategy 512.897 FRI Linear algebra 512.897 HOF Linear algebra

1. MATRICES AND GAUSSIAN ELIMINATION. Introduction. The Geometry of Linear Equations. An Example of Gaussian Elimination. Matrix Notation and Matrix Multiplication. Triangular Factors and Row Exchanges. Inverses and Transposes. Special Matrices and Applications. Review Exercises. 2. VECTOR SPACES. Vector Spaces and Subspaces. The Solution of m Equations in n Unknowns. Linear Independence, Basis, and Dimension. The Four Fundamental Subspaces. Networks and Incidence Matrices. Linear Transformations. Review Exercises. 3. ORTHOGONALITY. Perpendicular Vectors and Orthogonal Subspaces. Inner Products and Projections onto Lines. Least Squares Approximations. Orthogonal Bases, Orthogonal Matrices, and Gram-Schmidt Orthogonalization. The Fast Fourier Transform. Review and Preview. Review Exercises. 4. DETERMINANTS. Introduction. Properties of the Determinant. Formulas for the Determinant. Applications of Determinants. Review Exercises. 5. EIGENVALUES AND EIGENVECTORS. Introduction. Diagonalization of a Matrix. Difference Equations and the Powers Ak. Differential Equations and the Exponential eAt. Complex Matrices: Symmetric vs. Hermitian. Similarity Transformations. Review Exercises. 6. POSITIVE DEFINITE MATRICES. Minima, Maxima, and Saddle Points. Tests for Positive Definiteness. The Singular Value Decomposition. Minimum Principles. The Finite Element Method. 7. COMPUTATIONS WITH MATRICES. Introduction. The Norm and Condition Number. The Computation of Eigenvalues. Iterative Methods for Ax = b. 8. LINEAR PROGRAMMING AND GAME THEORY. Linear Inequalities. The Simplex Method. Primal and Dual Programs. Network Models. Game Theory. Appendix A: Computer Graphics. Appendix B: The Jordan Form. References. Solutions to Selected Exercises. Index.

Renowned professor and author Gilbert Strang demonstrates that linear algebra is a fascinating subject by showing both its beauty and value. While the mathematics is there, the effort is not all concentrated on proofs. Strang's emphasis is on understanding. He explains concepts, rather than deduces. This book is written in an informal and personal style and teaches real mathematics. The gears change in Chapter 2 as students reach the introduction of vector spaces. Throughout the book, the theory is motivated and reinforced by genuine applications, allowing pure mathematicians to teach applied mathematics.

There are no comments on this title.

to post a comment.

©2019-2020 Learning Resource Centre, Indian Institute of Management Bodhgaya

Powered by Koha