Financial analytics (Record no. 8086)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 04380nam a22002297a 4500 |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20250102170437.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 250102b |||||||| |||| 00| 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9789354644177 |
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 332.0028 |
Item number | MOH |
100 ## - MAIN ENTRY--PERSONAL NAME | |
Personal name | Mohanty, Pitabas |
245 ## - TITLE STATEMENT | |
Title | Financial analytics |
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) | |
Name of publisher, distributor, etc. | Wiley India Pvt. Ltd. |
Place of publication, distribution, etc. | New Delhi |
Date of publication, distribution, etc. | 2023 |
300 ## - PHYSICAL DESCRIPTION | |
Extent | xx, 664 p. |
365 ## - TRADE PRICE | |
Price type code | INR |
Price amount | 1019.00 |
490 ## - SERIES STATEMENT | |
Series statement | Wiley Analytics Series for Management |
500 ## - GENERAL NOTE | |
General note | Table of content:<br/>1. Introduction to Finance Analytics<br/><br/>1.1 Analytics in Finance<br/><br/>1.2 Data-Driven Finance<br/><br/>1.3 Organization of the Book<br/><br/>1.4 Use of R and Python<br/><br/>1.5 What this Book is Not About<br/><br/>1.6 Data and Codes Used in this Book<br/><br/>1.7 Skills and Resources Needed to Excel in Finance Analytics<br/><br/>2. Data in Finance<br/><br/>2.1 Introduction<br/><br/>2.2 Fundamental Data<br/><br/>2.3 Obtaining Fundamental Data<br/><br/>2.4 Marker Data<br/><br/>2.5 Analysts’ Data<br/><br/>2.6 Alternate Data<br/><br/>2.7 Downloading Data Using an API<br/><br/>3. Wrangling Financial Data<br/><br/>3.1 Reading Financial Data<br/><br/>3.2 Check Data Types (Variable Types)<br/><br/>3.3 Clean Variable Names<br/><br/>3.4 Managing Missing Data<br/><br/>3.5 Managing Invalid Data<br/><br/>3.6 Managing Outliers<br/><br/>3.7 Long and Wide Form Data<br/><br/>4. Exploratory Analysis of Financial Data<br/><br/>4.1 Introduction<br/><br/>4.2 Univariate Analysis of Fundamental Data<br/><br/>4.3 Bi-variate and Multi-variate Analysis of Fundamental Data<br/><br/>4.4 Analysis of Time Series Data<br/><br/>5. Understanding Basic Finance using R and Python<br/><br/>5.1 Introduction<br/><br/>5.2 Time Value of Money<br/><br/>5.3 Risk and Return<br/><br/>5.4 Asset Valuation<br/><br/>6. Accounting Data Analytics<br/><br/>6.1 Introduction<br/><br/>6.2 Case 1: Detecting Patterns in Financial Statements<br/><br/>6.3 Case 2: Predicting Corporate Bankruptcy<br/><br/>7. Applications of Natural Language Processing in Finance<br/><br/>7.1 Sourcing Text Data<br/><br/>7.2 Text Preprocessing<br/><br/>7.3 Case 1: Summarizing a Document<br/><br/>7.4 Case 2: Sentiment Analysis<br/><br/>7.5 Case 3: Sentiment Analysis Using Machine Learning<br/><br/>8. Financial Fraud Analytics<br/><br/>8.1 Benford’s Law<br/><br/>8.2 Predicting Credit Card Frauds<br/><br/>9. Valuation Analytics<br/><br/>9.1 Introduction<br/><br/>9.2 Theory of Valuation<br/><br/>9.3 Building a Valuation Model<br/><br/>9.4 Creating a Valuation Function<br/><br/>9.5 Estimating Implied Returns<br/><br/>9.6 Extension of the Model<br/><br/>9.7 Building the Valuation Function in Python<br/><br/>9.8 Valuation of Walmart Inc.<br/><br/>10. Portfolio Analytics<br/><br/>10.1 Introduction<br/><br/>10.2 Return and Risk of a Portfolio<br/><br/>10.3 Markowitz Optimization Process<br/><br/>10.4 Portfolio Optimization using Python<br/><br/>10.5 Portfolio Performance Evaluation<br/><br/>10.6 Portfolio Insurance<br/><br/>11. Developing and Backtesting Technical Trading Rules<br/><br/>11.1 Trend Indicators<br/><br/>11.2 Momentum Indicators<br/><br/>11.3 Volatility Indicators<br/><br/>11.4 Volume Indicators<br/><br/>11.5 Backtesting<br/><br/>11.6 Technical Analysis in Python<br/><br/>11.7 Comparing 5-day EMA with 21-day EMA in Python<br/><br/>11.8 Quantstrat to Automate Backtesting<br/><br/>12. Predicting Stock Prices/Returns<br/><br/>12.1 Predicting Stock Returns Based on Accounting Ratios<br/><br/>12.2 Predicting Stock Returns (Prices) using Past Stock Returns (Prices) Data<br/><br/>12.3 Predicting Stock Prices using Technical Indicators<br/><br/>12.4 Predicting Stock Returns using Valuation Multipliers and Value Drivers<br/><br/>12.5 Predicting Returns Based on Factor Exposures/Stock Characteristics<br/><br/>Appendix 1: Installing R and Python<br/><br/>Appendix 2: Introduction to R<br/><br/>Appendix 3: Introduction to Python<br/><br/>Appendix 4: A Concise Introduction to Machine Learning<br/><br/>Index<br/>[https://www.wileyindia.com/financial-analytics.html] |
520 ## - SUMMARY, ETC. | |
Summary, etc. | Financial Analytics applies modern data science tools to explore and understand interesting financial data patterns. Though the use of quantitative tools is nothing new in finance, modern financial analytics is different due to three recent trends: i) improved computing power with the availability of GPUs and TPUs, ii) advanced ML and AI algorithms, and iii) access to large volumes of practically all types of data. The new-age Financial Analytics takes a data-driven approach to study finance. Instead of making assumptions about the distribution of data or the relationship between variables, it simply lets the data speak for itself.<br/>(https://www.wileyindia.com/financial-analytics.html) |
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name as entry element | Finance-Databases |
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name as entry element | Finance-Mathematical models |
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name as entry element | Data processing |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Koha item type | Book |
Source of classification or shelving scheme | Dewey Decimal Classification |
Withdrawn status | Lost status | Source of classification or shelving scheme | Damaged status | Not for loan | Collection code | Bill No | Bill Date | Home library | Current library | Shelving location | Date acquired | Source of acquisition | Cost, normal purchase price | Total Checkouts | Full call number | Accession Number | Date last seen | Copy number | Cost, replacement price | Price effective from | Koha item type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dewey Decimal Classification | Finance & Accounting | TB3054 | 19-12-2024 | Indian Institute of Management LRC | Indian Institute of Management LRC | General Stacks | 01/04/2025 | Technical Bureau India Pvt. Ltd. | 708.20 | 332.0028 MOH | 006982 | 01/04/2025 | 1 | 1019.00 | 01/04/2025 | Book |