Foundations of quantitative finance book IV: (Record no. 7627)

MARC details
000 -LEADER
fixed length control field 06437nam a22002177a 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20241202201419.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 241201b |||||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781032206523
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 332.015195
Item number REI
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Reitano, Robert R
245 ## - TITLE STATEMENT
Title Foundations of quantitative finance book IV:
Remainder of title distribution functions and expectations
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Name of publisher, distributor, etc. CRC Press
Place of publication, distribution, etc. Boca Raton
Date of publication, distribution, etc. 2024
300 ## - PHYSICAL DESCRIPTION
Extent xvii, 250 p.
365 ## - TRADE PRICE
Price type code GBP
Price amount 76.99
490 ## - SERIES STATEMENT
Series statement Chapman and Hall/CRC Financial Mathematics Series
500 ## - GENERAL NOTE
General note Table of content:<br/>Preface<br/><br/>Introduction<br/><br/>1 Distribution and Density Functions<br/><br/>l.l Summary of Book II Results<br/><br/>l.l.l DistributionFunctionsonJR<br/><br/>l.l.2 Distribution Functions on JRn<br/><br/>l.2 DecompositionofDistributionFunctionsonJR<br/><br/>l.3 DensityFunctionsonJR<br/><br/>l.3.l TheLebesgueApproach<br/><br/>l.3.2 RiemannApproach<br/><br/>l.3.3 Riemann-Stieltjes Framework<br/><br/>l.4 Examples of Distribution Functions on JR<br/><br/>l.4.l DiscreteDistributionFunctions<br/><br/>l.4.2 ContinuousDistributionFunctions<br/><br/>l.4.3 MixedDistributionFunctions<br/><br/>2 Transformed Random Variables-<br/><br/>2.l MonotonicTransformations<br/><br/>2.2 SumsofIndependentRandomVariables<br/><br/>2.2.l DistributionFunctionsofSums<br/><br/>2.2.2 Density Functions of Sums <br/><br/>2.3 Ratios of Random Variables<br/><br/>2.3.l Independent Random Variable<br/><br/>2.3.2 Example without Independence<br/><br/>3 Order Statistics <br/><br/>3.l-M -Samples and Order Statistics<br/><br/>3.2-Distribution Functions for kth Order Statistics<br/><br/>3.3-Density Functions for kth Order Statistics<br/><br/>3.4-Joint Distribution of all Order Statistics<br/><br/>3.5-Density Functions on JRn<br/><br/>3.6-Multivariate Density Functions<br/><br/>-3.6.l Joint Density of all Order Statistics<br/><br/>-3.6.2 Marginal Densities and Distributions<br/><br/>-3.6.3 Conditional Densities and Distributions<br/><br/>3.7-The Renyi Representation Theorem<br/><br/> <br/><br/>4 EXpectationsofRandomVariables1<br/><br/>4.l General Definitions<br/><br/>4.l.l Is Expectation Well Defined?<br/><br/>4.l.2 Formal Resolution of Well-Definedness<br/><br/>4.2 Moments of Distributions<br/><br/>4.2.l Common Types of Moments<br/><br/>4.2.2 Moment Generating Function<br/><br/>4.2.3 Moments of Sums - Theory<br/><br/>4.2.4 Moments of Sums - Applications<br/><br/>4.2.5 Properties of Moments<br/><br/>4.2.6 Moment Examples-Discrete Distributions<br/><br/>4.2.7 Moment Examples-Continuous Distributions<br/><br/>4.3 Moment Inequalities<br/><br/>4.3.l Chebyshev's Inequality<br/><br/>4.3.2 Jensen's Inequality<br/><br/>4.3.3 Kolmogorov's Inequality<br/><br/>4.3.4 Cauchy-Schwarz Inequality<br/><br/>4.3.5 Holder and Lyapunov Inequalities<br/><br/>4.4 Uniqueness of Moments<br/><br/>4.4.l Applications of Moment Uniqueness<br/><br/>4.5 Weak Convergence and Moment Limits<br/><br/>5 Simulating Samples of RVs - EXamples <br/><br/>5.l Random Samples<br/><br/>5.l.l Discrete Distributions<br/><br/>5.l.2 Simpler Continuous Distributions<br/><br/>5.l.3 Normal and Lognormal Distributions<br/><br/>5.l.4 Student T Distribution<br/><br/> <br/><br/>5.2 Ordered Random Samples<br/><br/>5.2.l Direct Approaches<br/><br/>5.2.2 The Renyi Representation<br/><br/>6 Limit Theorems <br/><br/>6.l Introduction<br/><br/>6.2 Weak Convergence of Distributions<br/><br/>6.2.l Student T ⇒ Normal<br/><br/>6.2.2 Poisson Limit Theorem<br/><br/>6.2.3 "Weak Law of Small Numbers"<br/><br/>6.2.4 De Moivre-Laplace Theorem<br/><br/>6.2.5 The Central Limit Theorem l<br/><br/>6.2.6 Smirnov's Theorem on Uniform Order Statistics<br/><br/>6.2.7 A Limit Theorem on General Quantiles<br/><br/>6.2.8 A Limit Theorem on Exponential Order Statistics<br/><br/>6.3 Laws of Large Numbers<br/><br/>6.3.l Tail Events and Kolmogorov's 0-l Law<br/><br/>6.3.2 Weak Laws of Large Numbers<br/><br/>6.3.3 Strong Laws of Large Numbers<br/><br/>6.3.4 A Limit Theorem in EVT<br/><br/>6.4 Convergence of Empirical Distributions<br/><br/>6.4.l Definition and Basic Properties<br/><br/>6.4.2 The Glivenko-Cantelli Theorem<br/><br/>6.4.3 Distributional Estimates for Dn(s)<br/><br/>7 Estimating Tail Events 2 <br/><br/>7.l Large Deviation Theory 2<br/><br/>7.l.l Chernoff Bound<br/><br/>7.l.2 Cramer-Chernoff Theorem<br/><br/>7.2 Extreme Value Theory 2<br/><br/>7.2.l Fisher-Tippett-Gnedenko theorem<br/><br/>7.2.2 The Hill Estimator, 1 > 0<br/><br/>7.2.3 F E D(G,) is Asymptotically Pareto for 1 > 0<br/><br/>7.2.4 F E D(G,), 1 > 0, then 1H � 1<br/><br/>7.2.5 F E D(G,), 1 > 0, then 1H -1 1<br/><br/>7.2.6 Asymptotic Normality of the Hill Estimator<br/>7.2.7 The Pickands-Balkema-de Haan Theorem: 1 > 0<br/><br/>References <br/>[https://www.routledge.com/Foundations-of-Quantitative-Finance-Book-IV-Distribution-Functions-and-Expectations/Reitano/p/book/9781032206523]
520 ## - SUMMARY, ETC.
Summary, etc. Every finance professional wants and needs a competitive edge. A firm foundation in advanced mathematics can translate into dramatic advantages to professionals willing to obtain it. Many are not—and that is the competitive edge these books offer the astute reader.<br/><br/>Published under the collective title of Foundations of Quantitative Finance, this set of ten books develops the advanced topics in mathematics that finance professionals need to advance their careers. These books expand the theory most do not learn in graduate finance programs, or in most financial mathematics undergraduate and graduate courses.<br/><br/>As an investment executive and authoritative instructor, Robert R. Reitano presents the mathematical theories he encountered and used in nearly three decades in the financial services industry and two decades in academia where he taught in highly respected graduate programs.<br/><br/>Readers should be quantitatively literate and familiar with the developments in the earlier books in the set. While the set offers a continuous progression through these topics, each title can be studied independently.<br/><br/>(https://www.routledge.com/Foundations-of-Quantitative-Finance-Book-IV-Distribution-Functions-and-Expectations/Reitano/p/book/9781032206523)
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Finance--Mathematical models
700 ## - ADDED ENTRY--PERSONAL NAME
Personal name Integrals
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Book
Source of classification or shelving scheme Dewey Decimal Classification
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code Bill No Bill Date Home library Current library Shelving location Date acquired Source of acquisition Cost, normal purchase price Total Checkouts Full call number Accession Number Date last seen Copy number Cost, replacement price Price effective from Koha item type
    Dewey Decimal Classification     Finance & Accounting 1182328 28-11-2024 Indian Institute of Management LRC Indian Institute of Management LRC General Stacks 12/02/2024 Atlantic Publishers & Distributors 5785.03   332.015195 REI 006716 12/02/2024 1 8900.04 12/02/2024 Book

©2019-2020 Learning Resource Centre, Indian Institute of Management Bodhgaya

Powered by Koha