Real-world machine learning (Record no. 5016)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 03710nam a22002417a 4500 |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20230322120319.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 230322b ||||| |||| 00| 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9789351199496 |
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 006.31 |
Item number | BRI |
100 ## - MAIN ENTRY--PERSONAL NAME | |
Personal name | Brink, Henrik |
245 ## - TITLE STATEMENT | |
Title | Real-world machine learning |
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) | |
Name of publisher, distributor, etc. | Dreamtech Publisher |
Place of publication, distribution, etc. | New Delhi |
Date of publication, distribution, etc. | 2020 |
300 ## - PHYSICAL DESCRIPTION | |
Extent | xxii, 242 p. |
365 ## - TRADE PRICE | |
Price type code | INR |
Price amount | 799.00 |
504 ## - BIBLIOGRAPHY, ETC. NOTE | |
Bibliography, etc. note | Table of content<br/>1. What is machine learning?<br/><br/>1.1 Understanding how machines learn<br/><br/>1.2 Using data to make decisions<br/><br/>1.3 Following the ML workflow: from data to deployment<br/><br/>1.4 Boosting model performance with advanced techniques<br/><br/>1.5 Summary<br/><br/>1.6 Terms from this chapter<br/><br/> <br/><br/>2. Real-world data<br/><br/>2.1 Getting started: data collection<br/><br/>2.2 Preprocessing the data for modeling<br/><br/>2.4 Summary<br/><br/>2.5 Terms from this chapter<br/><br/> <br/><br/>3 Modeling and prediction<br/><br/>3.1 Basic machine-learning modeling<br/><br/>3.2 Classification: predicting into buckets<br/><br/>3.3 Regression: predicting numerical values<br/><br/>3.4 Summary<br/><br/>3.5 Terms from this chapter<br/><br/> <br/><br/>4 Model evaluation and optimization<br/><br/>4.1 Model generalization: assessing predictive accuracy for new data<br/><br/>4.2 Evaluation of classification models<br/><br/>4.3 Evaluation of regression models<br/><br/>4.4 Model optimization through parameter tuning<br/><br/>4.5 Summary<br/><br/>4.6 Terms from this chapter<br/><br/> <br/><br/>5 Basic feature engineering<br/><br/>5.1 Motivation: why is feature engineering useful?<br/><br/>5.2 Basic feature-engineering processes<br/><br/>5.3 Feature selection<br/><br/>5.4 Summary<br/><br/>5.5 Terms from this chapter<br/><br/> <br/><br/>6 Example: NYC taxi data<br/><br/>6.1 Data: NYC taxi trip and fare information<br/><br/>6.2 Modeling<br/><br/>6.3 Summary<br/><br/>6.4 Terms from this chapter<br/><br/> <br/><br/>7 Advanced feature engineering<br/><br/>7.1 Advanced text features<br/><br/>7.2 Image features<br/><br/>7.3 Time-series features<br/><br/>7.4 Summary<br/><br/>7.5 Terms from this chapter<br/><br/> <br/><br/>8 Advanced NLP example: movie review sentiment<br/><br/>8.1 Exploring the data and use case<br/><br/>8.2 Extracting basic NLP features and building the initial model<br/><br/>8.3 Advanced algorithms and model deployment considerations<br/><br/>8.4 Summary<br/><br/>8.5 Terms from this chapter<br/><br/> <br/><br/>9 Scaling machine-learning workflows<br/><br/>9.1 Before scaling up<br/><br/>9.2 Scaling ML modeling pipelines<br/><br/>9.3 Scaling predictions<br/><br/>9.4 Summary<br/><br/>9.5 Terms from this chapter<br/><br/> <br/><br/>10 Example: digital display advertising<br/><br/>10.1 Display advertising<br/><br/>10.2 Digital advertising data<br/><br/>10.3 Feature engineering and modeling strategy<br/><br/>10.4 Size and shape of the data<br/><br/>10.5 Singular value decomposition<br/><br/>10.6 Resource estimation and optimization<br/><br/>10.7 Modeling<br/><br/>10.8 K-nearest neighbors<br/><br/>10.9 Random forests<br/><br/>10.10 Other real-world considerations<br/><br/>10.11 Summary<br/><br/>10.12 Terms from this chapter<br/><br/>10.13 Recap and conclusion |
520 ## - SUMMARY, ETC. | |
Summary, etc. | Machine learning systems help you find valuable insights and patters in data which you had never recognized in the traditional methods. In the real world, ML techniques give you a way to identify trends, forecast behavior and make fact-based recommendations. It’s a hot and growing field and up-to speed ML developers are in demand. Real-World Machine Learning will teach you the concepts and techniques you need to be a successful machine learning practitioner without overdosing you on abstract theory and complex mathematics. By working through immediately relevant examples in Python, you’ll build skills in data acquisition and modelling, classification and regression. |
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name as entry element | Machine learning |
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name as entry element | Python (Computer program language) |
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name as entry element | Data mining |
700 ## - ADDED ENTRY--PERSONAL NAME | |
Personal name | Richards, Joseph W. |
700 ## - ADDED ENTRY--PERSONAL NAME | |
Personal name | Fetherolf, Mark |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Source of classification or shelving scheme | Dewey Decimal Classification |
Koha item type | Book |
Withdrawn status | Lost status | Source of classification or shelving scheme | Damaged status | Not for loan | Collection code | Bill No | Bill Date | Home library | Current library | Shelving location | Date acquired | Source of acquisition | Cost, normal purchase price | Total Checkouts | Full call number | Accession Number | Date last seen | Copy number | Cost, replacement price | Price effective from | Koha item type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dewey Decimal Classification | IT & Decisions Sciences | TB3162 | 16-02-2023 | Indian Institute of Management LRC | Indian Institute of Management LRC | General Stacks | 03/22/2023 | Technical Bureau India Pvt. Ltd. | 559.30 | 006.31 BRI | 004875 | 03/22/2023 | 1 | 799.00 | 03/22/2023 | Book |