Introduction to data science: (Record no. 5005)

MARC details
000 -LEADER
fixed length control field 04956nam a22002417a 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230322102109.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 230322b ||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9789354640506
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 006.312
Item number MAH
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Maheswari, B. Uma
245 ## - TITLE STATEMENT
Title Introduction to data science:
Remainder of title practical approach with R and Python
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Name of publisher, distributor, etc. Wiley India Pvt. Ltd.
Place of publication, distribution, etc. New Delhi
Date of publication, distribution, etc. 2023
300 ## - PHYSICAL DESCRIPTION
Extent xxvi, 557 p.
365 ## - TRADE PRICE
Price type code INR
Price amount 729.00
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Table of content<br/>Chapter 1 Introduction to Data Science<br/><br/>1.1 Data Science<br/><br/>1.2 Brief History of Data Science<br/><br/>1.3 Increasing Attention to Data Science<br/><br/>1.4 Fundamental Fields of Study Related to Data Science<br/><br/>1.5 Data Science and Related Terminologies<br/><br/>1.6 Types of Analytics<br/><br/>1.7 Applications of Data Science<br/><br/>1.8 Data Science Process Model<br/><br/> <br/><br/>Chapter 2 Introduction to R and Python<br/><br/>2.1 Introduction<br/><br/>2.2 R and RStudio Environment<br/><br/>2.3 Basics of R<br/><br/>2.4 Python Language and Python Environment<br/><br/>2.5 Basics of Python<br/><br/> <br/><br/>Chapter 3 Exploratory Data Analysis<br/><br/>3.1 Introduction<br/><br/>3.2 Steps in Data Preprocessing<br/><br/>3.3 Understanding Data<br/><br/>3.3.1 Steps Involved in EDA Using R Programming<br/><br/>3.4 Looking at the Data<br/><br/>3.5 Visualizing Data<br/><br/>3.6 Dealing with Outliers<br/><br/>3.7 Dealing with Missing Values<br/><br/>3.8 Standardizing Data<br/><br/>3.9 Steps Involved in EDA Using Python Programming<br/><br/>3.10 Looking at the Data<br/><br/>3.11 Visualization the Data<br/><br/>3.12 Treatment of Outliers<br/><br/> <br/><br/>Chapter 4 Data Visualization<br/><br/>4.1 Introduction<br/><br/>4.2 Data Visualization for Machine Learning<br/><br/>4.3 Data Visualization Techniques<br/><br/>4.4 Simple Data Visualization Using R<br/><br/>4.5 Data Visualization Using Ggplots in R<br/><br/>4.6 Data Visualization Using Python<br/><br/>4.7 Matplotlib Library<br/><br/>4.8 Seaborn Library<br/><br/> <br/><br/>Chapter 5 Dimensionality Reduction Techniques<br/><br/>5.1 Dimensionality Reduction<br/><br/>5.2 Independent and Dependent Variables<br/><br/>5.3 Relationship between Variables: Correlation<br/><br/>5.5 Factor Analysis<br/><br/>5.5.4 Rotated Factor Matrix<br/><br/>5.6 Application of Factor Analysis Using Python Programming<br/><br/> <br/><br/>Chapter 6 Types of Machine Learning Algorithms<br/><br/>6.1 Introduction<br/><br/>6.2 Supervised and Unsupervised Learning Algorithms<br/><br/>6.3 Supervised Learning Algorithm<br/><br/>6.4 Unsupervised Learning Algorithm<br/><br/> <br/><br/>Chapter 7 Unsupervised Learning Algorithms<br/><br/>7.1 Introduction<br/><br/>7.2 Association Rule Mining<br/><br/>7.3 Conjoint Analysis<br/><br/>7.4 Clustering<br/><br/>7.5 K Means Clustering<br/><br/> <br/><br/>Chapter 8 Text Analytics<br/><br/>8.1 Introduction<br/><br/>8.2 Unstructured Data<br/><br/>8.3 Word Cloud<br/><br/>8.4 Sentiment Analysis<br/><br/>8.5 Web and Social Media Analytics<br/><br/> <br/><br/>Chapter 9 Supervised Learning Algorithms: Linear and Logistic Regression<br/><br/>9.1 Introduction<br/><br/>9.2 Simple Linear Regression<br/><br/>9.3 Multiple Linear Regression<br/><br/>9.4 Logistic Regression<br/><br/> <br/><br/>Chapter 10 Supervised Learning Algorithms: Decision Tree and Random Forest<br/><br/>10.1 Decision Tree<br/><br/>10.2 Classification and Regression Technique<br/><br/>10.3 Random Forest<br/><br/> <br/><br/>Chapter 11 Supervised Learning Algorithm: KNN, Naïve Bayes, and Linear Discriminant Analysis<br/><br/>11.1 K-Nearest Neighbors<br/><br/>11.2 Naïve Bayes Algorithm<br/><br/>11.3 Linear Discriminant Analysis<br/><br/> <br/><br/>Chapter 12 Support Vector Machines and Artificial Neural Networks<br/><br/>12.1 Support Vector Machines<br/><br/>12.2 Artificial Neural Networks<br/><br/> <br/><br/>Chapter 13 Time Series Forecasting<br/><br/>13.1 Introduction<br/><br/>13.2 Time Series Data<br/><br/>13.3 Visualizing the Time Series Data<br/><br/>13.4 Components of Time Series Data<br/><br/>13.5 Stationarity of the Data<br/><br/>13.6 Exponential Smoothening Model<br/><br/>13.7 Holt–Winters Model<br/><br/>13.8 ARIMA Model<br/><br/> <br/><br/>Chapter 14 Ensemble Methods<br/><br/>14.1 Introduction<br/><br/>14.2 Dealing with Imbalanced Data<br/><br/>14.3 Ensemble Methods<br/><br/>14.4 Bias Variance Tradeoff<br/><br/>14.5 Bagging<br/><br/>14.6 Boosting<br/><br/>14.7 Synthetic Minority over Sampling Technique (SMOTE)<br/><br/> <br/><br/>Chapter 15 Artificial Intelligence<br/><br/>15.1 Introduction<br/><br/>15.2 Artificial Intelligence<br/><br/>15.3 Deep Learning<br/><br/>15.4 Convolutional Neural Networks<br/><br/>15.5 Reinforcement Learning<br/><br/> <br/><br/>Chapter 16 Applications of Analytics<br/><br/>16.1 Introduction<br/><br/>16.2 Application of Analytics in Healthcare<br/><br/>16.3 Application of Analytics in Agriculture<br/><br/>16.4 Application of Analytics in Business<br/><br/>16.5 Application of Analytics in Sports<br/><br/>16.6 Application of Analytics in Governance<br/><br/>
520 ## - SUMMARY, ETC.
Summary, etc. Introduction to Data Science: Practical Approach with R and Python covers all the fundamental concepts of Data Science in a concise manner. It offers a mix of insights and golden rules which would be needed in analyzing data. This book serves as a practical guide for Science/Engineering/MBA students – both at the undergraduate and postgraduate level interested in Data Science domain.
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Machine learning
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Python (Computer program language)
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Big data
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Data mining
700 ## - ADDED ENTRY--PERSONAL NAME
Personal name Sujatha, R.
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Book
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code Bill No Bill Date Home library Current library Shelving location Date acquired Source of acquisition Cost, normal purchase price Total Checkouts Full call number Accession Number Date last seen Copy number Cost, replacement price Price effective from Koha item type
    Dewey Decimal Classification     IT & Decisions Sciences TB3162 16-02-2023 Indian Institute of Management LRC Indian Institute of Management LRC General Stacks 03/22/2023 Technical Bureau India Pvt. Ltd. 510.30   006.312 MAH 004864 03/22/2023 1 729.00 03/22/2023 Book

©2019-2020 Learning Resource Centre, Indian Institute of Management Bodhgaya

Powered by Koha