Essentials of R for data analytics (Record no. 4999)

MARC details
000 -LEADER
fixed length control field 05387nam a22002057a 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230322095414.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 230322b ||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9789390421923
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 005.133
Item number RAT
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Ratnoo, Saroj Dahiya
245 ## - TITLE STATEMENT
Title Essentials of R for data analytics
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Name of publisher, distributor, etc. Wiley India Pvt. Ltd.
Place of publication, distribution, etc. New Delhi
Date of publication, distribution, etc. 2021
300 ## - PHYSICAL DESCRIPTION
Extent xiv, 317 p.
365 ## - TRADE PRICE
Price type code INR
Price amount 469.00
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Table of content<br/>Chapter 1 Introduction to HR Analytics<br/><br/>1.1 Introduction<br/><br/>1.2 About the R Environment<br/><br/>1.3 Starting R and RStudio<br/><br/>1.4 Entering and Executing Commands<br/><br/>1.5 Setting Variables<br/><br/>1.6 Knowing about Objects<br/><br/>1.7 Structure of Objects<br/><br/>1.8 Managing Objects in R’s Workspace<br/><br/>1.9 Creating Sequences<br/><br/>1.10 Operator Precedence<br/><br/>1.11 Setting Working Directory<br/><br/>1.12 Making and Executing Code from Script Files<br/><br/>1.13 Packages in R<br/><br/> <br/><br/>Chapter 2 Getting Help in R<br/><br/>2.1 Introduction<br/><br/>2.2 Top-Level Help<br/><br/>2.3 Help On Functions<br/><br/>2.4 Searching Documentation Through Keywords<br/><br/>2.5 Getting Help from Web<br/><br/>2.6 Searching for Relevant Packages<br/><br/>2.7 Getting Help from R Mailing Lists<br/><br/> <br/><br/>Chapter 3 Vectors and Factors in R<br/><br/>3.1 Introduction<br/><br/>3.2 Vectors<br/><br/>3.3 Factors<br/><br/> <br/><br/>Chapter 4 Matrices in R<br/><br/>4.1 Introduction<br/><br/>4.2 Arrays<br/><br/>4.3 Creating Matrices<br/><br/>4.4 Naming the Dimensions of a Matrix<br/><br/>4.5 Accessing Elements of Matrices<br/><br/>4.6 Arithmetic Operations on Matrices<br/><br/>4.7 Concatenating Matrices<br/><br/>4.8 Replicating Matrices<br/><br/>4.9 Other Useful Operations on Matrices<br/><br/> <br/><br/>Chapter 5 Lists and Data Frames in R<br/><br/>5.1 Introduction<br/><br/>5.2 Lists in R<br/><br/>5.3 Data Frames in R<br/><br/> <br/><br/>Chapter 6 Strings and Dates in R<br/><br/>6.1 Introduction<br/><br/>6.2 Handling Strings<br/><br/>6.3 Handling Date and Time<br/><br/> <br/><br/>Chapter 7 Input Output in R<br/><br/>7.1 Introduction<br/><br/>7.2 Reading Data from Console<br/><br/>7.3 Reading Data from Files<br/><br/>7.4 Displaying Data to Screen<br/><br/>7.5 Saving Objects to Files<br/><br/>7.6 Writing Data to Files<br/><br/> <br/><br/>Chapter 8 Conditional Statements and Loops in R<br/><br/>8.1 Introduction<br/><br/>8.2 Control Structures for Conditional Execution<br/><br/>8.3 Looping Structures in R<br/><br/> <br/><br/>Chapter 9 Writing Functions in R<br/><br/>9.1 Introduction<br/><br/>9.2 Functions in R<br/><br/>9.3 Defining a Function<br/><br/>9.4 Anonymous Functions<br/><br/>9.5 Scope of objects<br/><br/>9.6 Return Value of a Function<br/><br/>9.7 Named and Default Arguments<br/><br/>9.8 Passing Arguments to a Function<br/><br/>9.9 The … Arguments<br/><br/>9.10 Modifying a Data Frame Using a Function<br/><br/>9.11 Defining New Binary Operators<br/><br/> <br/><br/>Chapter 10 An Introduction to Graphics in R<br/><br/>10.1 Introduction<br/><br/>10.2 Pressure Dataset<br/><br/>10.3 Iris Dataset<br/><br/>10.4 My First Plot<br/><br/>10.5 Adding Elements<br/><br/>10.6 Controlling the Type of Scatter Plot<br/><br/>10.7 Controlling the Types of Lines and Points<br/><br/>10.8 Adding Grids<br/><br/>10.9 Customizing Axes<br/><br/>10.10 Scatter Plot with Groups in Data<br/><br/>10.11 Adding Legend<br/><br/>10.12 Adding a Regression Line<br/><br/>10.13 Creating Separate Scatter Plot for Each Factor Level<br/><br/>10.14 Customizing Margins<br/><br/>10.15 Adding Text<br/><br/>10.16 Saving Your Plot<br/><br/>10.17 Working with Multiple Graphics Devices<br/><br/>10.18 Plotting Scatter Plot of all Variables in a Dataset<br/><br/>10.19 Combining Multiple Plots in a Graphics Window<br/><br/>10.20 Graphics Parameters<br/><br/>10.21 A Customized Colourful Plot<br/><br/> <br/><br/>Chapter 11 Making Graphs and Charts in R<br/><br/>11.1 Introduction<br/><br/>11.2 Frequency Distribution of Categorical Data: Making Bar Charts<br/><br/>11.3 Frequency Distributions of Continuous Data: Making Histograms<br/><br/>11.4 Five-Number Summary: Making Box Plots<br/><br/>11.5 Visualizing Relationships in Continuous Data: Scatter Plot and Line Charts<br/><br/>11.6 Plotting Functions<br/><br/>11.7 Confirming Data Distribution: Making Q–Q Plots<br/><br/>11.8 Other Plots and Charts<br/><br/>11.9 Contour Plots<br/><br/> <br/><br/>Chapter 12 Graphics using ggplot2<br/><br/>12.1 Introduction<br/><br/>12.2 Scatter Plots<br/><br/>12.3 Geometric Objects in ggplot2: Creating Different Plots<br/><br/>12.4 Overall Appearance of a Plot<br/><br/>12.5 Other Resources and References<br/><br/> <br/><br/>Chapter 13 Data Transformations in R<br/><br/>13.1 Introduction<br/><br/>13.2 Datasets<br/><br/>13.3 Transformation Functions in “dplyr”<br/><br/>13.4 Data Transformation in Action on iris Dataset<br/><br/>13.5 Answering Questions on flights Dataset<br/><br/> <br/><br/>Chapter 14 Predictive Analytics: Classification in R<br/><br/>14.1 Introduction<br/><br/>14.2 Classification<br/><br/>14.3 Some Popular Classification Models<br/><br/>14.4 Implementing Classification in R<br/><br/> <br/><br/>Chapter 15 Predictive Analytics: Regression in R<br/><br/>15.1 Introduction<br/><br/>15.2 Simple Linear Regression Model<br/><br/>15.3 Determination of β0 and β1<br/><br/>15.4 Multiple Linear Regression<br/><br/>15.5 Predictive Modelling Using Regression<br/><br/>15.6 Simple Linear Regression Predictive Modelling in R<br/><br/>15.7 Modelling with Multiple Linear Regression in R<br/><br/>15.8 Regression Modelling with Higher Order Ploynomial Terms<br/><br/>15.9 Regression Modelling with Interaction Term
520 ## - SUMMARY, ETC.
Summary, etc. With widespread and exponential growth of data, people with data science background are in great demand. Data analytics, a subdomain of data science, is meant to turn data into insight and actionable knowledge. Data analytics mainly deals with exploring, visualizing, transforming and modelling data for making predictions. Learning R is an essential step towards becoming a data analyst.
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Data analytics
700 ## - ADDED ENTRY--PERSONAL NAME
Personal name Ratnoo, Himmat Singh
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Book
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code Bill No Bill Date Home library Current library Shelving location Date acquired Source of acquisition Cost, normal purchase price Total Checkouts Full call number Accession Number Date last seen Copy number Cost, replacement price Price effective from Koha item type
    Dewey Decimal Classification     IT & Decisions Sciences TB3162 16-02-2023 Indian Institute of Management LRC Indian Institute of Management LRC General Stacks 03/22/2023 Technical Bureau India Pvt. Ltd. 328.30   005.133 RAT 004859 03/22/2023 1 469.00 03/22/2023 Book

©2019-2020 Learning Resource Centre, Indian Institute of Management Bodhgaya

Powered by Koha