Deep learning using Python (Record no. 4995)

MARC details
000 -LEADER
fixed length control field 03042nam a22002297a 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230321182828.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 230321b ||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9788126579914
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 005.133
Item number ROS
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Rose, S. Lovelyn.
245 ## - TITLE STATEMENT
Title Deep learning using Python
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Name of publisher, distributor, etc. Wiley India Pvt. Ltd.
Place of publication, distribution, etc. New Delhi
Date of publication, distribution, etc. 2022
300 ## - PHYSICAL DESCRIPTION
Extent xvii, 190 p.
365 ## - TRADE PRICE
Price type code INR
Price amount 599.00
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Table of content<br/>1. Fundamentals of Neural Networks<br/><br/>1.1 Introduction<br/><br/>1.2 Types of Machine Learning<br/><br/>1.3 Overview of Artificial Neural Networks<br/><br/> <br/><br/>2. Convolutional Neural Network<br/><br/>2.1 Introduction<br/><br/>2.2 Components of CNN Architecture<br/><br/>2.3 Rectified Linear Unit (ReLU) Layer<br/><br/>2.4 Exponential Linear Unit (ELU, or SELU)<br/><br/>2.5 Unique Properties of CNN<br/><br/>2.6 Architectures of CNN<br/><br/>2.7 Applications of CNN<br/><br/> <br/><br/>3. Recurrent Neural Network: Basic Concepts<br/><br/>3.1 Introduction<br/><br/>3.2 Simple Recurrent Neural Network<br/><br/>3.3 LSTM Implementation<br/><br/>3.4 Gated Recurrent Unit (GRU)<br/><br/>3.5 Deep Recurrent Neural Network<br/><br/> <br/><br/>4. Autoencoder<br/><br/>4.1 Introduction<br/><br/>4.2 Features of Autoencoder<br/><br/>4.3 Types of Autoencoder<br/><br/> <br/><br/>5. Restricted Boltzmann Machine<br/><br/>5.1 Boltzmann Machine<br/><br/>5.2 RBM Architecture<br/><br/>5.3 Example<br/><br/>5.4 Types of RBM<br/><br/> <br/><br/>6. Open-Source Frameworks for Deep Learning<br/><br/>6.1 Python – An Introduction<br/><br/>6.2 Environmental Setup<br/><br/>6.3 Deep Learning with Python<br/><br/>6.4 Scientific Python (SciPy)<br/><br/>6.5 Frameworks<br/><br/>6.6 Hardware Support for Deep Learning<br/><br/> <br/><br/>7. Applications of Deep Learning<br/><br/>7.1 Introduction<br/><br/>7.2 Image Classification Using CNN<br/><br/>7.3 Visual Speech Recognition Using 3D-CNN<br/><br/>7.4 Stock Market Prediction Using Recurrent Neural Network<br/><br/>7.5 Next-Word Prediction Using RNN-LSTM<br/><br/>7.6 Tamil Handwritten Character Optical Recognition Using CRNN<br/><br/>7.7 Future Scope<br/><br/> <br/><br/>Summary<br/><br/>Review Questions<br/><br/>Assignment Problems<br/><br/>References
520 ## - SUMMARY, ETC.
Summary, etc. The book has been divided into seven chapters. Chapter 1 elaborately deals with the fundamentals of deep learning, to enable any reader to understand the deep learning architectures elaborated in subsequent chapters. Chapter 2 deals with Convolutional Neural Networks (CNNs), which have proven to be very effective in the area of computer vision. Chapter 3 deals with Recurrent Neural Networks (RNNs) and its variants. The various types of autoencoders, which are a type of Artificial Neural Network used to learn efficient data encoding, are presented in Chapter 4. To learn the probability distribution over the set of inputs, Restricted Boltzmann Machine (RBM) is discussed in Chapter 5. Chapter 6 presents popular open source frameworks in Python for deep learning applications. Chapter 7 describes how to utilize the knowledge that you have gained from previous chapters in real-time applications.
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Python (Computer program language)
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Computer programming
700 ## - ADDED ENTRY--PERSONAL NAME
Personal name Kumar, L. Ashok
700 ## - ADDED ENTRY--PERSONAL NAME
Personal name Renuka, D. Karthika
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Book
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code Bill No Bill Date Home library Current library Shelving location Date acquired Source of acquisition Cost, normal purchase price Total Checkouts Full call number Accession Number Date last seen Copy number Cost, replacement price Price effective from Koha item type
    Dewey Decimal Classification     IT & Decisions Sciences TB3162 16-02-2023 Indian Institute of Management LRC Indian Institute of Management LRC General Stacks 03/21/2023 Technical Bureau India Pvt. Ltd. 419.30   005.133 ROS 004855 03/21/2023 1 599.00 03/21/2023 Book

©2019-2020 Learning Resource Centre, Indian Institute of Management Bodhgaya

Powered by Koha