Artificial intelligence: (Record no. 4972)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 07767nam a22002177a 4500 |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20230321152135.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 230321b ||||| |||| 00| 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9788126519934 |
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 006.3 |
Item number | GOE |
100 ## - MAIN ENTRY--PERSONAL NAME | |
Personal name | Goel, Lavika |
245 ## - TITLE STATEMENT | |
Title | Artificial intelligence: |
Remainder of title | concepts and applications |
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) | |
Name of publisher, distributor, etc. | Wiley India Pvt. Ltd. |
Place of publication, distribution, etc. | New Delhi |
Date of publication, distribution, etc. | 2022 |
300 ## - PHYSICAL DESCRIPTION | |
Extent | xxi, 755 p. |
365 ## - TRADE PRICE | |
Price type code | INR |
Price amount | 779.00 |
504 ## - BIBLIOGRAPHY, ETC. NOTE | |
Bibliography, etc. note | Preface<br/><br/>Acknowledgments<br/><br/>About the Author<br/><br/>List of Video Content<br/><br/> <br/><br/>PART I Foundations of Artificial Intelligence<br/><br/>Chapter 1 Basics of Artificial Intelligence<br/><br/>1.1 What is Artificial Intelligence?<br/><br/>1.2 Definition of Artificial Intelligence Through Problems<br/><br/>1.3 History of Artificial Intelligence<br/><br/>1.4 Artificial Intelligence – Problems and Techniques<br/><br/>1.5 Production Systems<br/><br/>1.6 Shift in Focus of AI Towards Providing Smarter Solutions<br/><br/> <br/><br/>Chapter 2 Problem Solving Methods in Artificial Intelligence<br/><br/>2.1 Introduction<br/><br/>2.2 State Space Search<br/><br/>2.3 Production System<br/><br/>2.4 Problem Characteristics<br/><br/>2.5 Control Strategy<br/><br/>2.6 Issues in the Design of Search Programs<br/><br/>2.7 Search Strategies<br/><br/>2.8 Advanced Problems<br/><br/> <br/><br/>Chapter 3 Informed and Uninformed Search Strategies<br/><br/>3.1 Introduction<br/><br/>3.2 Generate-and-Test Method<br/><br/>3.3 Hill Climbing Method<br/><br/>3.4 Best First Search and A* Search<br/><br/>3.5 Means End Analysis<br/><br/>3.6 Intelligent Agents and Environment<br/><br/>3.7 Problem Reduction, AO* Algorithm<br/><br/>3.8 Constraint Satisfaction with Inference, Backtracking, and Local Search<br/><br/>3.9 Local Search Algorithms and Optimization Problems<br/><br/>3.10 Local Search in Continuous Spaces<br/><br/> <br/><br/>Chapter 4 Knowledge Representation<br/><br/>4.1 Introduction<br/><br/>4.2 Ontologies, Objects, and Events<br/><br/>4.3 Representations and Mappings<br/><br/>4.4 Approaches to Knowledge Representation<br/><br/>4.5 Forward versus Backward Chaining<br/><br/>4.6 Matching and Control Knowledge<br/><br/>4.7 Slot and Filler Structures<br/><br/>4.8 Issues in Knowledge Representation<br/><br/>4.9 Developments in the Field of Knowledge Representation<br/><br/> <br/><br/>PART II Basics of Machine Learning<br/><br/> <br/><br/>Chapter 5 Neural Networks and Applications<br/><br/>5.1 Introduction<br/><br/>5.2 Learning in Neural Networks<br/><br/>5.3 Choosing Cost Function<br/><br/>5.4 Types of Learning<br/><br/>5.5 Recurrent Neural Network<br/><br/>5.6 Back-propagation<br/><br/>5.7 Convolutional Neural Networks and Deep Neural Networks<br/><br/>5.8 Applications of Neural Networks<br/><br/>5.9 Challenges in Neural Networks<br/><br/> <br/><br/>Chapter 6 Fuzzy Logic and Applications<br/><br/>6.1 Introduction<br/><br/>6.2 Set Theory<br/><br/>6.3 Fuzzy Set Theory<br/><br/>6.4 Terminology Associated with Fuzzy Sets<br/><br/>6.5 Fuzzification and Defuzzification<br/><br/>6.6 Formation of Fuzzy Rules<br/><br/>6.7 Fuzzy Logic Inference System<br/><br/>6.8 Fuzzy Database and Queries<br/><br/>6.9 Fuzzy Logic Control System<br/><br/>6.10 Fuzzy Inference Processing: Mamdani and Sugeno<br/><br/>6.11 Adaptive Neuro-Fuzzy Inference System<br/><br/>6.12 Applications<br/><br/> <br/><br/>Chapter 7 Statistical Machine Learning<br/><br/>7.1 Introduction<br/><br/>7.2 Probability Axioms<br/><br/>7.3 Bayes’ Rule<br/><br/>7.4 Bayesian Network<br/><br/>7.5 Dynamic Bayesian Networks<br/><br/>7.6 Hidden Markov Model<br/><br/>7.7 Probabilistic Reasoning<br/><br/>7.8 Certainty Factor Theory<br/><br/>7.9 Dempster–Shafer Theory<br/><br/> <br/><br/>Chapter 8 Decision Processes and Reinforcement Learning<br/><br/>8.1 What is Learning?<br/><br/>8.2 Forms of Learning<br/><br/>8.3 Learning Decision Trees<br/><br/>8.4 Theory of Learning<br/><br/>8.5 Learning by Examples<br/><br/>8.6 Inductive Learning<br/><br/>8.7 Explanation-Based Learning<br/><br/>8.8 Regression and Classification with Linear Models<br/><br/>8.9 Artificial Neural Networks<br/><br/>8.10 Parametric Models<br/><br/>8.11 Non-Parametric Models<br/><br/>8.12 Support Vector Machines<br/><br/>8.13 Ensemble Learning<br/><br/>8.14 Statistical Learning<br/><br/>8.15 Reinforcement Learning<br/><br/>8.16 Applications of Reinforcement Learning<br/><br/> <br/><br/>Chapter 9 Classification Problems in Machine Learning<br/><br/>9.1 Utility Theory<br/><br/>9.2 Multi-Attribute Utility Function<br/><br/>9.3 Decision Network<br/><br/>9.4 Value of Information<br/><br/>9.5 Decision-Theoretic Expert Systems<br/><br/>9.6 Sequential Decision Problems<br/><br/>9.7 Multiple Agent Solution: Game Theory<br/><br/>9.8 Mechanism Design<br/><br/>9.9 Modern Approaches to Classification<br/><br/> <br/><br/>PART III Applications of Artificial Intelligence<br/><br/> <br/><br/>Chapter 10 Game Playing<br/><br/>10.1 Introduction<br/><br/>10.2 Minimax Search Procedure<br/><br/>10.3 Alpha–Beta Cutoff<br/><br/>10.4 Imperfect Real-Time Decisions<br/><br/>10.5 Stochastic Games<br/><br/>10.6 State-of-the-Art Game Programs<br/><br/>10.7 Modern Examples<br/><br/> <br/><br/>Chapter 11 Text Analysis and Mining<br/><br/>11.1 Introduction<br/><br/>11.2 Language Models<br/><br/>11.3 Text Classification<br/><br/>11.4 Information Retrieval<br/><br/>11.5 Information Extraction<br/><br/>11.6 Phrase Structure Grammar<br/><br/>11.7 Syntactic Processing<br/><br/>11.8 Augmented Grammars and Semantic Analysis<br/><br/>11.9 Discourse and Pragmatic Processing<br/><br/>11.10 Statistical Natural Language Processing<br/><br/>11.11 Cross-Lingual Natural Language Processing<br/><br/>11.12 Spell Checking<br/><br/>11.13 Speech Recognition<br/><br/>11.14 Use of Python’s NLTK Library in Modern Text Mining Applications<br/><br/>11.15 Case Study: Sentiment Analysis of User Comments on Social Networking Website Twitter using Machine Learning<br/><br/> <br/><br/>Chapter 12 Expert Systems and Applications<br/><br/>12.1 Expert System<br/><br/>12.2 Knowledge Representation<br/><br/>12.3 Expert System Shells<br/><br/>12.4 Knowledge Acquisition of an Expert System<br/><br/>12.5 Applications of Expert Systems<br/><br/>12.6 Examples of Expert Systems<br/><br/>12.7 Problem Solving Examples<br/><br/> <br/><br/>PART IV Logic in Artificial Intelligence<br/><br/> <br/><br/>Chapter 13 First-Order Logic<br/><br/>13.1 Introduction<br/><br/>13.2 Propositional Logic<br/><br/>13.3 First-Order Logic<br/><br/> <br/><br/>Chapter 14 Prolog<br/><br/>14.1 Introduction<br/><br/>14.2 Logic Programming: Symbolic Logic, Clausal Form<br/><br/>14.3 Converting English to Prolog Facts and Rules<br/><br/>14.4 Prolog Terminology<br/><br/>14.5 Variables and Arithmetic Operators<br/><br/>14.6 Inference Process of Prolog<br/><br/>14.7 Tracing Model of Execution<br/><br/>14.8 List Structures<br/><br/>14.9 Operations on List<br/><br/>14.10 Drawbacks of Prolog<br/><br/>14.11 Applications of Logic Programming<br/><br/> <br/><br/>Chapter 15 Modern Artificial Intelligence Languages and Tools<br/><br/>15.1 Python<br/><br/>15.2 MATLAB<br/><br/>15.3 R<br/><br/> <br/><br/>PART V Trends in Machine Learning<br/><br/> <br/><br/>Chapter 16 Concepts in Machine Learning<br/><br/>16.1 Introduction<br/><br/>16.2 Approaches to Machine Learning<br/><br/>16.3 Building Efficient Machine Learning Systems<br/><br/>16.4 Reasons for Sudden Spurt in Use of Machine Learning<br/><br/>16.5 Artificial Intelligence versus Machine Learning<br/><br/>16.6 Taxonomy of Machine Learning Based Techniques<br/><br/>16.7 List of Machine Learning Softwares<br/><br/> <br/><br/>Chapter 17 Advanced Topics in Machine Learning<br/><br/>17.1 Introduction<br/><br/>17.2 Artificial Immune System<br/><br/>17.3 Swarm Intelligence<br/><br/>17.4 Geoscience-Based Techniques<br/><br/>17.5 Selection of Suitable Technique Based on Problem Characteristics<br/><br/>17.6 Performance Validation of Intelligent Systems Using Statistics<br/><br/>17.7 Applied Machine Learning<br/><br/> <br/><br/>Appendix A Project Work<br/><br/>Appendix B Multiple-Choice Questions and Answers<br/><br/>Appendix C Interview Questions and Answers<br/><br/>Appendix D Bibliography<br/><br/>Index<br/><br/> |
520 ## - SUMMARY, ETC. | |
Summary, etc. | Artificial Intelligence: Concepts and Applications is a comprehensive discourse on the fundamental principles and concepts that lead to building artificially intelligent programs. It details the wide range of possible application areas where artificial intelligence can be used. The concepts of heuristic search and development of meta-heuristic algorithms has led a far way towards the development of computational intelligence algorithms and nature inspired algorithms that have been used in a variety of problem solving methods.<br/><br/> |
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name as entry element | Artificial intelligence |
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name as entry element | Artificial intelligence--Study and teaching |
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name as entry element | Artificial intelligence--Data processing |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Source of classification or shelving scheme | Dewey Decimal Classification |
Koha item type | Book |
Withdrawn status | Lost status | Source of classification or shelving scheme | Damaged status | Not for loan | Collection code | Bill No | Bill Date | Home library | Current library | Shelving location | Date acquired | Source of acquisition | Cost, normal purchase price | Total Checkouts | Full call number | Accession Number | Checked out | Date last seen | Date checked out | Copy number | Cost, replacement price | Price effective from | Koha item type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dewey Decimal Classification | IT & Decisions Sciences | TB3162 | 16-02-2023 | Indian Institute of Management LRC | Indian Institute of Management LRC | General Stacks | 03/21/2023 | Technical Bureau India Pvt. Ltd. | 545.30 | 2 | 006.3 GOE | 004833 | 01/07/2025 | 10/09/2024 | 10/09/2024 | 1 | 779.00 | 03/21/2023 | Book |