Machine learning using R (Record no. 4447)

MARC details
000 -LEADER
fixed length control field 04390nam a22002417a 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20221207133823.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 221207b ||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9789354246111
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 006.31
Item number KUM
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Kumar, Rahul
245 ## - TITLE STATEMENT
Title Machine learning using R
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Name of publisher, distributor, etc. Wiley India Pvt. Ltd.
Place of publication, distribution, etc. New Delhi
Date of publication, distribution, etc. 2022
300 ## - PHYSICAL DESCRIPTION
Extent xii, 430 p.
365 ## - TRADE PRICE
Price type code INR
Price amount 779.00
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Table of content<br/><br/>Chapter 1 Machine Learning and R<br/><br/>1.1 Introduction to Analytics and Machine Learning<br/><br/>1.2 Why Machine Learning Algorithms?<br/><br/>1.3 Framework for Development of Machine Learning Algorithms<br/><br/>1.4 Introduction to R<br/><br/>1.5 Popularity Index for R<br/><br/>1.6 R Installations – Getting Started<br/><br/>1.7 RStudio<br/><br/>1.8 Understanding RStudio IDE<br/><br/>1.9 Anaconda<br/><br/>1.10 Anaconda Navigator<br/><br/>Chapter 2 Data Preprocessing<br/><br/>2.1 Data Preprocessing and Descriptive Analytics Using data.frame in R<br/><br/>2.2 IPL Dataset Description<br/><br/>2.3 Loading Dataset to R<br/><br/>2.4 Operations on data.table<br/><br/>2.5 Group by Operations<br/><br/>2.6 Keys and Binary Search-Based Subset<br/><br/>2.7 Join operations<br/><br/>2.8 Data Table, Data Frame, and Package DT<br/><br/>Chapter 3 Data Visualization<br/><br/>3.1 Data Visualization in R<br/><br/>3.2 IPL Dataset Description<br/><br/>3.3 Install Packages<br/><br/>3.4 Invoke packages<br/><br/>3.5 Exploration of Data Using Visualization<br/><br/>Chapter 4 Probability and Distributions<br/><br/>4.1 Overview<br/><br/>4.2 Probability Theory – Terminology<br/><br/>4.3 Random Variable<br/><br/>4.4 Binomial Distribution<br/><br/>4.5 Poisson Distribution<br/><br/>4.6 Exponential Distribution<br/><br/>4.7 Normal Distribution<br/><br/>4.8 Central Limit Theorem<br/><br/>4.9 Hypothesis Testing<br/><br/>4.10 Analysis of Variance (ANOVA)<br/><br/>Chapter 5 Supervised Learning Algorithm: Linear Regression<br/><br/>5.1 Simple Linear Regression<br/><br/>5.2 Steps for Regression Model Building<br/><br/>5.3 Building Simple Linear Regression Model<br/><br/>5.4 Example: Predicting MBA Salary from Marks in Grade 10<br/><br/>5.5 Model Diagnostics<br/><br/>5.6 Making Predictions and Measuring Accuracy<br/><br/>5.7 Multiple Linear Regression<br/><br/>5.8 Predicting the SOLD PRICE (Auction Price) of Players in Indian Premier League<br/><br/>5.9 Developing Multiple Linear Regression Model<br/><br/>5.10 Model Diagnostic<br/><br/>5.11 Making Predictions and Measuring Accuracy<br/><br/>Chapter 6 Classification Problems<br/><br/>6.1 Classification Overview<br/><br/>6.2 Binary Logistic Regression<br/><br/>6.3 Predicting Which Employee Will Leave the Organization Using Logistic Regression<br/><br/>6.4 Model Diagnostic<br/><br/>6.5 Gain Chart and Lift Chart<br/><br/>6.6 Decision Tree Learning 216<br/><br/>6.7 Model Selection<br/><br/>Chapter 7 Advanced Machine Learning<br/><br/>7.1 Overview<br/><br/>7.2 How Do Machines Learn?<br/><br/>7.3 Gradient Descent<br/><br/>7.4 Bias-Variance Trade-off<br/><br/>7.5 Strategy to Improve ML Models – Bias Variance Trade-off<br/><br/>7.6 Machine Learning – Regression Using glmnet Package<br/><br/>7.7 Machine Learning – Regression Using Caret<br/><br/>7.8 Results summary<br/><br/>7.9 Machine Learning – Logistic Regression Using glmnet<br/><br/>Chapter 8 Ensemble Methods<br/><br/>8.1 Overview<br/><br/>8.2 Random Forest<br/><br/>8.3 Class Imbalance Problem<br/><br/>8.4 Random Forest Using h2o Package<br/><br/>8.5 Gradient Boosted Machine – Regression<br/><br/>8.6 Gradient Boosting Machine – Classification<br/><br/>8.7 Gradient Boosting Machine using h2o Package<br/><br/>8.8 XGBoost using h2o Package<br/><br/>Chapter 9 Text Analytics<br/><br/>9.1 Overview<br/><br/>9.2 Data Scrapping<br/><br/>9.3 Regular Expression<br/><br/>9.4 Packages for Text Analytics<br/><br/>9.5 Data Import<br/><br/>9.6 Text Prepreprocessing<br/><br/>9.7 Twitter Data Visualization<br/><br/>9.8 Sentiment Analysis<br/><br/>9.9 Sentiment Analysis with Negative Words<br/><br/>9.10 Document Term Matrix<br/><br/>9.11 Topic Modelling
520 ## - SUMMARY, ETC.
Summary, etc. Description<br/>Machine Learning Using R aims to make ML concepts and model development using R simpler for students and practitioners. This book covers the theoretical concepts behind ML algorithms and illustrates use of R for developing ML models using datasets from customer relationship management, healthcare, finance, human resource management, social media, and sports. The book discusses challenges and remedies in building machine learning models using several real-life cases which the authors have worked upon as a part of consulting engagements.
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Machine learning
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element R (Computer program language)
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Database management
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Electronic data processing
700 ## - ADDED ENTRY--PERSONAL NAME
Personal name Kumar, U. Dinesh
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Book
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code Bill No Bill Date Home library Current library Shelving location Date acquired Source of acquisition Cost, normal purchase price Total Checkouts Full call number Accession Number Checked out Date last seen Date checked out Copy number Cost, replacement price Price effective from Koha item type Total Renewals
    Dewey Decimal Classification     IT & Decisions Sciences TB2161 12-11-2022 Indian Institute of Management LRC Indian Institute of Management LRC General Stacks 12/07/2022 Technical Bureau India Pvt. Ltd. 521.93 3 006.31 KUM 003927 03/18/2024 12/19/2023 12/19/2023 1 779.00 12/07/2022 Book  
    Dewey Decimal Classification     IT & Decisions Sciences TB2161 12-11-2022 Indian Institute of Management LRC Indian Institute of Management LRC General Stacks 12/07/2022 Technical Bureau India Pvt. Ltd. 521.93 1 006.31 KUM 003928   04/21/2023 12/17/2022 2 779.00 12/07/2022 Book 1

©2019-2020 Learning Resource Centre, Indian Institute of Management Bodhgaya

Powered by Koha