Introduction to probability models (Record no. 370)

MARC details
000 -LEADER
fixed length control field 04978nam a22002177a 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20210904151459.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 190906b ||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9789351072249
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 519.2
Item number ROS
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Ross, Sheldon M.
245 ## - TITLE STATEMENT
Title Introduction to probability models
250 ## - EDITION STATEMENT
Edition statement 11th
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc. USA
Name of publisher, distributor, etc. Academic Press
Date of publication, distribution, etc. 2014
300 ## - PHYSICAL DESCRIPTION
Extent xv, 767 p.
365 ## - TRADE PRICE
Price type code USD
Price amount 85.00
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Table of Contents<br/><br/>Preface<br/><br/>1. Introduction to Probability Theory<br/><br/>1.1. Introduction<br/><br/>1.2. Sample Space and Events<br/><br/>1.3. Probabilities Defined on Events<br/><br/>1.4. Conditional Probabilities<br/><br/>1.5. Independent Events<br/><br/>1.6. Bayes' Formula<br/><br/>Exercises<br/><br/>References<br/><br/>2. Random Variables<br/><br/>2.1. Random Variables<br/><br/>2.2. Discrete Random Variables<br/><br/>2.2.1. The Bernoulli Random Variable<br/><br/>2.2.2. The Binomial Random Variable<br/><br/>2.2.3. The Geometric Random Variable<br/><br/>2.2.4. The Poisson Random Variable<br/><br/>2.3. Continuous Random Variables<br/><br/>2.3.1. The Uniform Random Variable<br/><br/>2.3.2. Exponential Random Variables<br/><br/>2.3.3. Gamma Random Variables<br/><br/>2.3.4. Normal Random Variables<br/><br/>2.4. Expectation of a Random Variable<br/><br/>2.4.1. The Discrete Case<br/><br/>2.4.2. The Continuous Case<br/><br/>2.4.3. Expectation of a Function of a Random Variable<br/><br/>2.5. Jointly Distributed Random Variables<br/><br/>2.5.1. Joint Distribution Functions<br/><br/>2.5.2. Independent Random Variables<br/><br/>2.5.3. Joint Probability Distribution of Functions of Random Variables<br/><br/>2.6. Moment Generating Functions<br/><br/>2.7. Limit Theorems<br/><br/>2.8. Stochastic Processes<br/><br/>Exercises<br/><br/>References<br/><br/>3. Conditional Probability and Conditional Expectation<br/><br/>3.1. Introduction<br/><br/>3.2. The Discrete Case<br/><br/>3.3. The Continuous Case<br/><br/>3.4. Computing Expectations by Conditioning<br/><br/>3.5. Computing Probabilities by Conditioning<br/><br/>3.6. Some Applications<br/><br/>3.6.1. A List Model<br/><br/>3.6.2. A Random Graph<br/><br/>3.6.3. Uniform Priors, Polya's Urn Model, and Bose-Einstein Statistics<br/><br/>3.6.4. In Normal Sampling X- and S2 are Independent<br/><br/>Exercises<br/><br/>4. Markov Chains<br/><br/>4.1. Introduction<br/><br/>4.2. Chapman-Kolmogorov Equations<br/><br/>4.3. Classification of States<br/><br/>4.4. Limiting Probabilities<br/><br/>4.5. Some Applications<br/><br/>4.5.1. The Gambler's Ruin Problem<br/><br/>4.5.2. A Model for Algorithmic Efficiency<br/><br/>4.6. Branching Processes<br/><br/>4.7. Time Reversible Markov Chains<br/><br/>4.8. Markov Decision Processes<br/><br/>Exercises<br/><br/>References<br/><br/>5. The Exponential Distribution and the Poisson Process<br/><br/>5.1. Introduction<br/><br/>5.2. The Exponential Distribution<br/><br/>5.2.1. Definition<br/><br/>5.2.2. Properties of the Exponential Distribution<br/><br/>5.2.3. Further Properties of the Exponential Distribution<br/><br/>5.3. The Poisson Process<br/><br/>5.3.1. Counting Processes<br/><br/>5.3.2. Definition of the Poisson Process<br/><br/>5.3.3. Interarrival and Waiting Time Distributions<br/><br/>5.3.4. Further Properties of Poisson Processes<br/><br/>5.3.5. Conditional Distribution of the Arrival Times<br/><br/>5.3.6. Estimating Software Reliability<br/><br/>5.4. Generalizations of the Poisson Process<br/><br/>5.4.1. Nonhomogeneous Poisson Process<br/><br/>5.4.2. Compound Poisson Process<br/><br/>Exercises<br/><br/>References<br/><br/>6. Continuous-Time Markov Chains<br/><br/>6.1. Introduction<br/><br/>6.2. Continuous-Time Markov Chains<br/><br/>6.3. Birth and Death Processes<br/><br/>6.4. The Kolmogorov Differential Equations<br/><br/>6.5. Limiting Probabilities<br/><br/>6.6. Time Reversibility<br/><br/>6.7. Uniformization<br/><br/>6.8. Computing the Transition Probabilities<br/><br/>Exercises
520 ## - SUMMARY, ETC.
Summary, etc. Description<br/>Introduction to Probability Models, Eleventh Edition is the latest version of Sheldon Ross's classic bestseller, used extensively by professionals and as the primary text for a first undergraduate course in applied probability. The book introduces the reader to elementary probability theory and stochastic processes, and shows how probability theory can be applied fields such as engineering, computer science, management science, the physical and social sciences, and operations research.<br/><br/>The hallmark features of this text have been retained in this eleventh edition: superior writing style; excellent exercises and examples covering the wide breadth of coverage of probability topic; and real-world applications in engineering, science, business and economics. The 65% new chapter material includes coverage of finite capacity queues, insurance risk models, and Markov chains, as well as updated data. The book contains compulsory material for new Exam 3 of the Society of Actuaries including several sections in the new exams. It also presents new applications of probability models in biology and new material on Point Processes, including the Hawkes process. There is a list of commonly used notations and equations, along with an instructor's solutions manual.<br/><br/>This text will be a helpful resource for professionals and students in actuarial science, engineering, operations research, and other fields in applied probability
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Probabilities
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Mathematics
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Book
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code Home library Current library Shelving location Date acquired Source of acquisition Total Checkouts Full call number Accession Number Date last seen Copy number Cost, replacement price Price effective from Koha item type Total Renewals Date checked out Checked out
    Dewey Decimal Classification     IT & Decisions Sciences Indian Institute of Management LRC Indian Institute of Management LRC General Stacks 05/20/2019 Gratis Book   519.2 ROS 000290 09/06/2019 1 6930.00 09/06/2019 Book      
    Dewey Decimal Classification     IT & Decisions Sciences Indian Institute of Management LRC Indian Institute of Management LRC General Stacks 05/20/2019 Gratis Book 2 519.2 ROS 000291 08/17/2021 2 6930.00 09/06/2019 Book 1 05/19/2021  
    Dewey Decimal Classification     IT & Decisions Sciences Indian Institute of Management LRC Indian Institute of Management LRC General Stacks 05/20/2019 Gratis Book 3 519.2 ROS 000292 09/13/2021 3 6930.00 09/06/2019 Book 1 08/17/2021  
    Dewey Decimal Classification     IT & Decisions Sciences Indian Institute of Management LRC Indian Institute of Management LRC General Stacks 05/20/2019 Gratis Book 1 519.2 ROS 000293 11/21/2024 4 6930.00 09/06/2019 Book   11/21/2024 01/20/2025

©2019-2020 Learning Resource Centre, Indian Institute of Management Bodhgaya

Powered by Koha